Copied to
clipboard

G = C322SD16order 144 = 24·32

The semidirect product of C32 and SD16 acting via SD16/C2=D4

non-abelian, soluble, monomial

Aliases: C322SD16, C2.4S3≀C2, (C3×C6).4D4, D6⋊S3.C2, C322C82C2, C322Q81C2, C3⋊Dic3.2C22, SmallGroup(144,118)

Series: Derived Chief Lower central Upper central

C1C32C3⋊Dic3 — C322SD16
C1C32C3×C6C3⋊Dic3D6⋊S3 — C322SD16
C32C3×C6C3⋊Dic3 — C322SD16
C1C2

Generators and relations for C322SD16
 G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=b-1, dad=a-1, cbc-1=a, bd=db, dcd=c3 >

12C2
2C3
2C3
6C22
6C4
9C4
2C6
2C6
4S3
12C6
9C8
9Q8
9D4
2Dic3
2D6
6Dic3
6Dic3
6C12
6C2×C6
4C3×S3
9SD16
6Dic6
6C3⋊D4
2S3×C6
2C3×Dic3

Character table of C322SD16

 class 12A2B3A3B4A4B6A6B6C6D8A8B12A12B
 size 111244121844121218181212
ρ1111111111111111    trivial
ρ211-1111111-1-1-1-111    linear of order 2
ρ311-111-1111-1-111-1-1    linear of order 2
ρ411111-111111-1-1-1-1    linear of order 2
ρ5220220-222000000    orthogonal lifted from D4
ρ62-202200-2-200-2--200    complex lifted from SD16
ρ72-202200-2-200--2-200    complex lifted from SD16
ρ8440-21201-20000-1-1    orthogonal lifted from S3≀C2
ρ94421-200-21-1-10000    orthogonal lifted from S3≀C2
ρ10440-21-201-2000011    orthogonal lifted from S3≀C2
ρ1144-21-200-21110000    orthogonal lifted from S3≀C2
ρ124-40-2100-1200003-3    symplectic faithful, Schur index 2
ρ134-40-2100-120000-33    symplectic faithful, Schur index 2
ρ144-401-2002-1--3-30000    complex faithful
ρ154-401-2002-1-3--30000    complex faithful

Permutation representations of C322SD16
On 24 points - transitive group 24T217
Generators in S24
(2 13 22)(4 24 15)(6 9 18)(8 20 11)
(1 21 12)(3 14 23)(5 17 16)(7 10 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(18 20)(19 23)(22 24)

G:=sub<Sym(24)| (2,13,22)(4,24,15)(6,9,18)(8,20,11), (1,21,12)(3,14,23)(5,17,16)(7,10,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(18,20)(19,23)(22,24)>;

G:=Group( (2,13,22)(4,24,15)(6,9,18)(8,20,11), (1,21,12)(3,14,23)(5,17,16)(7,10,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(18,20)(19,23)(22,24) );

G=PermutationGroup([(2,13,22),(4,24,15),(6,9,18),(8,20,11)], [(1,21,12),(3,14,23),(5,17,16),(7,10,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(18,20),(19,23),(22,24)])

G:=TransitiveGroup(24,217);

On 24 points - transitive group 24T220
Generators in S24
(1 12 21)(3 23 14)(5 16 17)(7 19 10)
(2 13 22)(4 24 15)(6 9 18)(8 20 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 20)(10 23)(11 18)(12 21)(13 24)(14 19)(15 22)(16 17)

G:=sub<Sym(24)| (1,12,21)(3,23,14)(5,16,17)(7,19,10), (2,13,22)(4,24,15)(6,9,18)(8,20,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,20)(10,23)(11,18)(12,21)(13,24)(14,19)(15,22)(16,17)>;

G:=Group( (1,12,21)(3,23,14)(5,16,17)(7,19,10), (2,13,22)(4,24,15)(6,9,18)(8,20,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,20)(10,23)(11,18)(12,21)(13,24)(14,19)(15,22)(16,17) );

G=PermutationGroup([(1,12,21),(3,23,14),(5,16,17),(7,19,10)], [(2,13,22),(4,24,15),(6,9,18),(8,20,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,20),(10,23),(11,18),(12,21),(13,24),(14,19),(15,22),(16,17)])

G:=TransitiveGroup(24,220);

C322SD16 is a maximal subgroup of
C32⋊D85C2  C32⋊D8⋊C2  C32⋊Q16⋊C2  C3⋊S32SD16  C62.12D4  C62.13D4  C62.15D4  C336SD16  C337SD16  C338SD16
C322SD16 is a maximal quotient of
C62.3D4  C62.4D4  C62.6D4  He32SD16  C336SD16  C337SD16  C338SD16

Matrix representation of C322SD16 in GL4(𝔽7) generated by

3060
4636
1154
1031
,
5120
0514
1250
5240
,
5643
4061
5512
2231
,
6656
4636
5421
0120
G:=sub<GL(4,GF(7))| [3,4,1,1,0,6,1,0,6,3,5,3,0,6,4,1],[5,0,1,5,1,5,2,2,2,1,5,4,0,4,0,0],[5,4,5,2,6,0,5,2,4,6,1,3,3,1,2,1],[6,4,5,0,6,6,4,1,5,3,2,2,6,6,1,0] >;

C322SD16 in GAP, Magma, Sage, TeX

C_3^2\rtimes_2{\rm SD}_{16}
% in TeX

G:=Group("C3^2:2SD16");
// GroupNames label

G:=SmallGroup(144,118);
// by ID

G=gap.SmallGroup(144,118);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,73,55,218,116,50,964,730,256,299,881]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=b^-1,d*a*d=a^-1,c*b*c^-1=a,b*d=d*b,d*c*d=c^3>;
// generators/relations

Export

Subgroup lattice of C322SD16 in TeX
Character table of C322SD16 in TeX

׿
×
𝔽