# Extensions 1→N→G→Q→1 with N=C5×M4(2) and Q=C2

Direct product G=N×Q with N=C5×M4(2) and Q=C2
dρLabelID
C10×M4(2)80C10xM4(2)160,191

Semidirect products G=N:Q with N=C5×M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×M4(2))⋊1C2 = C8⋊D10φ: C2/C1C2 ⊆ Out C5×M4(2)404+(C5xM4(2)):1C2160,129
(C5×M4(2))⋊2C2 = C8.D10φ: C2/C1C2 ⊆ Out C5×M4(2)804-(C5xM4(2)):2C2160,130
(C5×M4(2))⋊3C2 = D5×M4(2)φ: C2/C1C2 ⊆ Out C5×M4(2)404(C5xM4(2)):3C2160,127
(C5×M4(2))⋊4C2 = D20.2C4φ: C2/C1C2 ⊆ Out C5×M4(2)804(C5xM4(2)):4C2160,128
(C5×M4(2))⋊5C2 = C5×C8⋊C22φ: C2/C1C2 ⊆ Out C5×M4(2)404(C5xM4(2)):5C2160,197
(C5×M4(2))⋊6C2 = C5×C8.C22φ: C2/C1C2 ⊆ Out C5×M4(2)804(C5xM4(2)):6C2160,198
(C5×M4(2))⋊7C2 = C20.46D4φ: C2/C1C2 ⊆ Out C5×M4(2)404+(C5xM4(2)):7C2160,30
(C5×M4(2))⋊8C2 = D207C4φ: C2/C1C2 ⊆ Out C5×M4(2)404(C5xM4(2)):8C2160,32
(C5×M4(2))⋊9C2 = C5×C4.D4φ: C2/C1C2 ⊆ Out C5×M4(2)404(C5xM4(2)):9C2160,50
(C5×M4(2))⋊10C2 = C5×C4≀C2φ: C2/C1C2 ⊆ Out C5×M4(2)402(C5xM4(2)):10C2160,54
(C5×M4(2))⋊11C2 = C5×C8○D4φ: trivial image802(C5xM4(2)):11C2160,192

Non-split extensions G=N.Q with N=C5×M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×M4(2)).1C2 = C20.53D4φ: C2/C1C2 ⊆ Out C5×M4(2)804(C5xM4(2)).1C2160,29
(C5×M4(2)).2C2 = C4.12D20φ: C2/C1C2 ⊆ Out C5×M4(2)804-(C5xM4(2)).2C2160,31
(C5×M4(2)).3C2 = C5×C4.10D4φ: C2/C1C2 ⊆ Out C5×M4(2)804(C5xM4(2)).3C2160,51
(C5×M4(2)).4C2 = C5×C8.C4φ: C2/C1C2 ⊆ Out C5×M4(2)802(C5xM4(2)).4C2160,58

׿
×
𝔽