Extensions 1→N→G→Q→1 with N=C10 and Q=M4(2)

Direct product G=N×Q with N=C10 and Q=M4(2)
dρLabelID
C10×M4(2)80C10xM4(2)160,191

Semidirect products G=N:Q with N=C10 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C101M4(2) = C2×C4.F5φ: M4(2)/C4C4 ⊆ Aut C1080C10:1M4(2)160,201
C102M4(2) = C2×C22.F5φ: M4(2)/C22C4 ⊆ Aut C1080C10:2M4(2)160,211
C103M4(2) = C2×C8⋊D5φ: M4(2)/C8C2 ⊆ Aut C1080C10:3M4(2)160,121
C104M4(2) = C2×C4.Dic5φ: M4(2)/C2×C4C2 ⊆ Aut C1080C10:4M4(2)160,142

Non-split extensions G=N.Q with N=C10 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C10.1M4(2) = C20⋊C8φ: M4(2)/C4C4 ⊆ Aut C10160C10.1M4(2)160,76
C10.2M4(2) = C10.C42φ: M4(2)/C4C4 ⊆ Aut C10160C10.2M4(2)160,77
C10.3M4(2) = D10⋊C8φ: M4(2)/C4C4 ⊆ Aut C1080C10.3M4(2)160,78
C10.4M4(2) = Dic5⋊C8φ: M4(2)/C22C4 ⊆ Aut C10160C10.4M4(2)160,79
C10.5M4(2) = C23.2F5φ: M4(2)/C22C4 ⊆ Aut C1080C10.5M4(2)160,87
C10.6M4(2) = C20.8Q8φ: M4(2)/C8C2 ⊆ Aut C10160C10.6M4(2)160,21
C10.7M4(2) = C408C4φ: M4(2)/C8C2 ⊆ Aut C10160C10.7M4(2)160,22
C10.8M4(2) = D101C8φ: M4(2)/C8C2 ⊆ Aut C1080C10.8M4(2)160,27
C10.9M4(2) = C42.D5φ: M4(2)/C2×C4C2 ⊆ Aut C10160C10.9M4(2)160,10
C10.10M4(2) = C203C8φ: M4(2)/C2×C4C2 ⊆ Aut C10160C10.10M4(2)160,11
C10.11M4(2) = C20.55D4φ: M4(2)/C2×C4C2 ⊆ Aut C1080C10.11M4(2)160,37
C10.12M4(2) = C5×C8⋊C4central extension (φ=1)160C10.12M4(2)160,47
C10.13M4(2) = C5×C22⋊C8central extension (φ=1)80C10.13M4(2)160,48
C10.14M4(2) = C5×C4⋊C8central extension (φ=1)160C10.14M4(2)160,55

׿
×
𝔽