direct product, metabelian, soluble, monomial
Aliases: A4×Q16, C8.1(C2×A4), C2.8(D4×A4), (C22×C8).C6, C22⋊(C3×Q16), (C22×Q16)⋊C3, (C8×A4).2C2, Q8.3(C2×A4), (Q8×A4).2C2, (C2×A4).16D4, C4.3(C22×A4), C23.25(C3×D4), (C22×Q8).4C6, (C4×A4).19C22, (C22×C4).3(C2×C6), SmallGroup(192,1016)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 224 in 73 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2 [×2], C3, C4, C4 [×5], C22, C22 [×2], C6, C8, C8, C2×C4 [×6], Q8 [×2], Q8 [×6], C23, C12 [×3], A4, C2×C8 [×2], Q16, Q16 [×5], C22×C4, C22×C4 [×2], C2×Q8 [×6], C24, C3×Q8 [×2], C2×A4, C22×C8, C2×Q16 [×4], C22×Q8 [×2], C3×Q16, C4×A4, C4×A4 [×2], C22×Q16, C8×A4, Q8×A4 [×2], A4×Q16
Quotients:
C1, C2 [×3], C3, C22, C6 [×3], D4, A4, C2×C6, Q16, C3×D4, C2×A4 [×3], C3×Q16, C22×A4, D4×A4, A4×Q16
Generators and relations
G = < a,b,c,d,e | a2=b2=c3=d8=1, e2=d4, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 34 31)(2 35 32)(3 36 25)(4 37 26)(5 38 27)(6 39 28)(7 40 29)(8 33 30)(9 24 45)(10 17 46)(11 18 47)(12 19 48)(13 20 41)(14 21 42)(15 22 43)(16 23 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 18 5 22)(2 17 6 21)(3 24 7 20)(4 23 8 19)(9 29 13 25)(10 28 14 32)(11 27 15 31)(12 26 16 30)(33 48 37 44)(34 47 38 43)(35 46 39 42)(36 45 40 41)
G:=sub<Sym(48)| (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,34,31)(2,35,32)(3,36,25)(4,37,26)(5,38,27)(6,39,28)(7,40,29)(8,33,30)(9,24,45)(10,17,46)(11,18,47)(12,19,48)(13,20,41)(14,21,42)(15,22,43)(16,23,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,18,5,22)(2,17,6,21)(3,24,7,20)(4,23,8,19)(9,29,13,25)(10,28,14,32)(11,27,15,31)(12,26,16,30)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41)>;
G:=Group( (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,34,31)(2,35,32)(3,36,25)(4,37,26)(5,38,27)(6,39,28)(7,40,29)(8,33,30)(9,24,45)(10,17,46)(11,18,47)(12,19,48)(13,20,41)(14,21,42)(15,22,43)(16,23,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,18,5,22)(2,17,6,21)(3,24,7,20)(4,23,8,19)(9,29,13,25)(10,28,14,32)(11,27,15,31)(12,26,16,30)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41) );
G=PermutationGroup([(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,34,31),(2,35,32),(3,36,25),(4,37,26),(5,38,27),(6,39,28),(7,40,29),(8,33,30),(9,24,45),(10,17,46),(11,18,47),(12,19,48),(13,20,41),(14,21,42),(15,22,43),(16,23,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,18,5,22),(2,17,6,21),(3,24,7,20),(4,23,8,19),(9,29,13,25),(10,28,14,32),(11,27,15,31),(12,26,16,30),(33,48,37,44),(34,47,38,43),(35,46,39,42),(36,45,40,41)])
Matrix representation ►G ⊆ GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 1 | 0 | 0 |
8 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 65 | 65 | 65 |
0 | 0 | 0 | 8 | 0 |
45 | 54 | 0 | 0 | 0 |
27 | 60 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
19 | 58 | 0 | 0 | 0 |
29 | 54 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,1,0,72,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[8,0,0,0,0,0,8,0,0,0,0,0,8,65,0,0,0,0,65,8,0,0,0,65,0],[45,27,0,0,0,54,60,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[19,29,0,0,0,58,54,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
Character table of A4×Q16
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 2 | 4 | 4 | 6 | 12 | 12 | 4 | 4 | 2 | 2 | 6 | 6 | 8 | 8 | 16 | 16 | 16 | 16 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | -1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ11 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | -1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | √2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | √2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | -2 | 0 | 0 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ17 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | -2 | 0 | 0 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ18 | 2 | -2 | -2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | √2 | √2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | complex lifted from C3×Q16 |
ρ19 | 2 | -2 | -2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | √2 | √2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | complex lifted from C3×Q16 |
ρ20 | 2 | -2 | -2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | √2 | √2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ3-ζ85ζ3 | ζ83ζ3-ζ8ζ3 | ζ87ζ32-ζ85ζ32 | ζ83ζ32-ζ8ζ32 | complex lifted from C3×Q16 |
ρ21 | 2 | -2 | -2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | √2 | √2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ32-ζ8ζ32 | ζ87ζ32-ζ85ζ32 | ζ83ζ3-ζ8ζ3 | ζ87ζ3-ζ85ζ3 | complex lifted from C3×Q16 |
ρ22 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ23 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ24 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | -3 | 3 | -1 | 1 | -1 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ25 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | -3 | -3 | -1 | 1 | 1 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ26 | 6 | 6 | -2 | -2 | 0 | 0 | -6 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×A4 |
ρ27 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3√2 | 3√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ28 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3√2 | 3√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
In GAP, Magma, Sage, TeX
A_4\times Q_{16}
% in TeX
G:=Group("A4xQ16");
// GroupNames label
G:=SmallGroup(192,1016);
// by ID
G=gap.SmallGroup(192,1016);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,168,197,176,1011,514,80,1027,1784]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=1,e^2=d^4,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations