# Extensions 1→N→G→Q→1 with N=C4 and Q=D6⋊C4

Direct product G=N×Q with N=C4 and Q=D6⋊C4
dρLabelID
C4×D6⋊C496C4xD6:C4192,497

Semidirect products G=N:Q with N=C4 and Q=D6⋊C4
extensionφ:Q→Aut NdρLabelID
C41(D6⋊C4) = (C2×D12)⋊10C4φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C496C4:1(D6:C4)192,547
C42(D6⋊C4) = (C2×C4)⋊6D12φ: D6⋊C4/C2×C12C2 ⊆ Aut C496C4:2(D6:C4)192,498
C43(D6⋊C4) = C4⋊(D6⋊C4)φ: D6⋊C4/C22×S3C2 ⊆ Aut C496C4:3(D6:C4)192,546

Non-split extensions G=N.Q with N=C4 and Q=D6⋊C4
extensionφ:Q→Aut NdρLabelID
C4.1(D6⋊C4) = D248C4φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4484C4.1(D6:C4)192,47
C4.2(D6⋊C4) = C6.D16φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C496C4.2(D6:C4)192,50
C4.3(D6⋊C4) = C6.Q32φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4192C4.3(D6:C4)192,51
C4.4(D6⋊C4) = D24.C4φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4484+C4.4(D6:C4)192,54
C4.5(D6⋊C4) = C24.8D4φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4964-C4.5(D6:C4)192,55
C4.6(D6⋊C4) = Dic12.C4φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4964C4.6(D6:C4)192,56
C4.7(D6⋊C4) = C2×C6.D8φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C496C4.7(D6:C4)192,524
C4.8(D6⋊C4) = C2×C6.SD16φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4192C4.8(D6:C4)192,528
C4.9(D6⋊C4) = C4.(D6⋊C4)φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4192C4.9(D6:C4)192,532
C4.10(D6⋊C4) = C426D6φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C4484C4.10(D6:C4)192,564
C4.11(D6⋊C4) = C23.51D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C496C4.11(D6:C4)192,679
C4.12(D6⋊C4) = D6⋊C840C2φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C496C4.12(D6:C4)192,688
C4.13(D6⋊C4) = C23.53D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C448C4.13(D6:C4)192,690
C4.14(D6⋊C4) = C2×D12⋊C4φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C448C4.14(D6:C4)192,697
C4.15(D6⋊C4) = C2.Dic24φ: D6⋊C4/C2×C12C2 ⊆ Aut C4192C4.15(D6:C4)192,62
C4.16(D6⋊C4) = C2.D48φ: D6⋊C4/C2×C12C2 ⊆ Aut C496C4.16(D6:C4)192,68
C4.17(D6⋊C4) = D24.1C4φ: D6⋊C4/C2×C12C2 ⊆ Aut C4962C4.17(D6:C4)192,69
C4.18(D6⋊C4) = M5(2)⋊S3φ: D6⋊C4/C2×C12C2 ⊆ Aut C4484+C4.18(D6:C4)192,75
C4.19(D6⋊C4) = C12.4D8φ: D6⋊C4/C2×C12C2 ⊆ Aut C4964-C4.19(D6:C4)192,76
C4.20(D6⋊C4) = D242C4φ: D6⋊C4/C2×C12C2 ⊆ Aut C4484C4.20(D6:C4)192,77
C4.21(D6⋊C4) = C2×C424S3φ: D6⋊C4/C2×C12C2 ⊆ Aut C448C4.21(D6:C4)192,486
C4.22(D6⋊C4) = (C2×Dic6)⋊7C4φ: D6⋊C4/C2×C12C2 ⊆ Aut C4192C4.22(D6:C4)192,488
C4.23(D6⋊C4) = C4⋊C436D6φ: D6⋊C4/C2×C12C2 ⊆ Aut C448C4.23(D6:C4)192,560
C4.24(D6⋊C4) = C4⋊C4.237D6φ: D6⋊C4/C2×C12C2 ⊆ Aut C496C4.24(D6:C4)192,563
C4.25(D6⋊C4) = C2×C2.Dic12φ: D6⋊C4/C2×C12C2 ⊆ Aut C4192C4.25(D6:C4)192,662
C4.26(D6⋊C4) = (C22×C8)⋊7S3φ: D6⋊C4/C2×C12C2 ⊆ Aut C496C4.26(D6:C4)192,669
C4.27(D6⋊C4) = C2×C2.D24φ: D6⋊C4/C2×C12C2 ⊆ Aut C496C4.27(D6:C4)192,671
C4.28(D6⋊C4) = C2×C12.46D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C448C4.28(D6:C4)192,689
C4.29(D6⋊C4) = C2×C12.47D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C496C4.29(D6:C4)192,695
C4.30(D6⋊C4) = M4(2)⋊24D6φ: D6⋊C4/C2×C12C2 ⊆ Aut C4484C4.30(D6:C4)192,698
C4.31(D6⋊C4) = C12.C42φ: D6⋊C4/C22×S3C2 ⊆ Aut C4192C4.31(D6:C4)192,88
C4.32(D6⋊C4) = C12.(C4⋊C4)φ: D6⋊C4/C22×S3C2 ⊆ Aut C496C4.32(D6:C4)192,89
C4.33(D6⋊C4) = C423Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C4484C4.33(D6:C4)192,90
C4.34(D6⋊C4) = M4(2)⋊Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C496C4.34(D6:C4)192,113
C4.35(D6⋊C4) = (C2×C24)⋊C4φ: D6⋊C4/C22×S3C2 ⊆ Aut C4484C4.35(D6:C4)192,115
C4.36(D6⋊C4) = C12.21C42φ: D6⋊C4/C22×S3C2 ⊆ Aut C4484C4.36(D6:C4)192,119
C4.37(D6⋊C4) = C4○D12⋊C4φ: D6⋊C4/C22×S3C2 ⊆ Aut C496C4.37(D6:C4)192,525
C4.38(D6⋊C4) = D66M4(2)φ: D6⋊C4/C22×S3C2 ⊆ Aut C448C4.38(D6:C4)192,685
C4.39(D6⋊C4) = C23.54D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C496C4.39(D6:C4)192,692
C4.40(D6⋊C4) = D6⋊C16central extension (φ=1)96C4.40(D6:C4)192,66
C4.41(D6⋊C4) = D12.C8central extension (φ=1)962C4.41(D6:C4)192,67
C4.42(D6⋊C4) = C8.25D12central extension (φ=1)484C4.42(D6:C4)192,73
C4.43(D6⋊C4) = Dic6.C8central extension (φ=1)964C4.43(D6:C4)192,74
C4.44(D6⋊C4) = C12.8C42central extension (φ=1)48C4.44(D6:C4)192,82
C4.45(D6⋊C4) = (C2×C12)⋊3C8central extension (φ=1)192C4.45(D6:C4)192,83
C4.46(D6⋊C4) = C12.2C42central extension (φ=1)48C4.46(D6:C4)192,91
C4.47(D6⋊C4) = (C2×C12).Q8central extension (φ=1)484C4.47(D6:C4)192,92
C4.48(D6⋊C4) = (C2×C24)⋊5C4central extension (φ=1)192C4.48(D6:C4)192,109
C4.49(D6⋊C4) = C12.10C42central extension (φ=1)96C4.49(D6:C4)192,111
C4.50(D6⋊C4) = C12.4C42central extension (φ=1)96C4.50(D6:C4)192,117
C4.51(D6⋊C4) = M4(2)⋊4Dic3central extension (φ=1)484C4.51(D6:C4)192,118
C4.52(D6⋊C4) = C4.(C2×D12)central extension (φ=1)96C4.52(D6:C4)192,561
C4.53(D6⋊C4) = (C2×D12)⋊13C4central extension (φ=1)484C4.53(D6:C4)192,565
C4.54(D6⋊C4) = C2×D6⋊C8central extension (φ=1)96C4.54(D6:C4)192,667
C4.55(D6⋊C4) = C23.28D12central extension (φ=1)96C4.55(D6:C4)192,672
C4.56(D6⋊C4) = M4(2).31D6central extension (φ=1)484C4.56(D6:C4)192,691

׿
×
𝔽