Copied to
clipboard

G = C4:C4.237D6order 192 = 26·3

15th non-split extension by C4:C4 of D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4:C4.237D6, C4.64(C2xD12), (C2xC4).47D12, C4.24(D6:C4), (C2xDic6):11C4, (C2xC12).473D4, C12.144(C2xD4), (C22xC6).77D4, C6.SD16:28C2, C42:C2.9S3, C12.66(C22xC4), Dic6.27(C2xC4), (C22xC4).128D6, C12.48(C22:C4), (C2xC12).331C23, C22.24(D6:C4), C2.2(Q8.14D6), C23.62(C3:D4), C3:2(C23.38D4), C6.106(C8.C22), (C22xDic6).12C2, (C22xC12).153C22, (C2xDic6).263C22, C4.53(S3xC2xC4), (C2xC4).45(C4xS3), C2.19(C2xD6:C4), (C2xC12).93(C2xC4), (C2xC6).460(C2xD4), C6.46(C2xC22:C4), (C2xC3:C8).88C22, C22.74(C2xC3:D4), (C2xC4).242(C3:D4), (C3xC4:C4).268C22, (C2xC6).16(C22:C4), (C2xC4).431(C22xS3), (C2xC4.Dic3).19C2, (C3xC42:C2).10C2, SmallGroup(192,563)

Series: Derived Chief Lower central Upper central

C1C12 — C4:C4.237D6
C1C3C6C2xC6C2xC12C2xDic6C22xDic6 — C4:C4.237D6
C3C6C12 — C4:C4.237D6
C1C22C22xC4C42:C2

Generators and relations for C4:C4.237D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=ab-1, dcd-1=c-1 >

Subgroups: 360 in 150 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, Q8, C23, Dic3, C12, C12, C12, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C22xC4, C2xQ8, C3:C8, Dic6, Dic6, C2xDic3, C2xC12, C2xC12, C2xC12, C22xC6, Q8:C4, C42:C2, C2xM4(2), C22xQ8, C2xC3:C8, C4.Dic3, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, C2xDic6, C22xDic3, C22xC12, C23.38D4, C6.SD16, C2xC4.Dic3, C3xC42:C2, C22xDic6, C4:C4.237D6
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, D12, C3:D4, C22xS3, C2xC22:C4, C8.C22, D6:C4, S3xC2xC4, C2xD12, C2xC3:D4, C23.38D4, C2xD6:C4, Q8.14D6, C4:C4.237D6

Smallest permutation representation of C4:C4.237D6
On 96 points
Generators in S96
(1 19 4 22)(2 20 5 23)(3 21 6 24)(7 16 10 13)(8 17 11 14)(9 18 12 15)(25 33 41 35)(26 31 42 36)(27 32 40 34)(28 39 44 48)(29 37 45 46)(30 38 43 47)(49 94 52 91)(50 95 53 92)(51 96 54 93)(55 89 58 86)(56 90 59 87)(57 85 60 88)(61 69 64 72)(62 70 65 67)(63 71 66 68)(73 82 76 79)(74 83 77 80)(75 84 78 81)
(1 92 16 70)(2 96 17 68)(3 94 18 72)(4 95 13 67)(5 93 14 71)(6 91 15 69)(7 65 22 50)(8 63 23 54)(9 61 24 52)(10 62 19 53)(11 66 20 51)(12 64 21 49)(25 56 46 81)(26 60 47 79)(27 58 48 83)(28 74 32 89)(29 78 33 87)(30 76 31 85)(34 86 44 77)(35 90 45 75)(36 88 43 73)(37 84 41 59)(38 82 42 57)(39 80 40 55)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 36 4 31)(2 35 5 33)(3 34 6 32)(7 47 10 38)(8 46 11 37)(9 48 12 39)(13 30 16 43)(14 29 17 45)(15 28 18 44)(19 42 22 26)(20 41 23 25)(21 40 24 27)(49 77 52 74)(50 76 53 73)(51 75 54 78)(55 72 58 69)(56 71 59 68)(57 70 60 67)(61 89 64 86)(62 88 65 85)(63 87 66 90)(79 95 82 92)(80 94 83 91)(81 93 84 96)

G:=sub<Sym(96)| (1,19,4,22)(2,20,5,23)(3,21,6,24)(7,16,10,13)(8,17,11,14)(9,18,12,15)(25,33,41,35)(26,31,42,36)(27,32,40,34)(28,39,44,48)(29,37,45,46)(30,38,43,47)(49,94,52,91)(50,95,53,92)(51,96,54,93)(55,89,58,86)(56,90,59,87)(57,85,60,88)(61,69,64,72)(62,70,65,67)(63,71,66,68)(73,82,76,79)(74,83,77,80)(75,84,78,81), (1,92,16,70)(2,96,17,68)(3,94,18,72)(4,95,13,67)(5,93,14,71)(6,91,15,69)(7,65,22,50)(8,63,23,54)(9,61,24,52)(10,62,19,53)(11,66,20,51)(12,64,21,49)(25,56,46,81)(26,60,47,79)(27,58,48,83)(28,74,32,89)(29,78,33,87)(30,76,31,85)(34,86,44,77)(35,90,45,75)(36,88,43,73)(37,84,41,59)(38,82,42,57)(39,80,40,55), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,36,4,31)(2,35,5,33)(3,34,6,32)(7,47,10,38)(8,46,11,37)(9,48,12,39)(13,30,16,43)(14,29,17,45)(15,28,18,44)(19,42,22,26)(20,41,23,25)(21,40,24,27)(49,77,52,74)(50,76,53,73)(51,75,54,78)(55,72,58,69)(56,71,59,68)(57,70,60,67)(61,89,64,86)(62,88,65,85)(63,87,66,90)(79,95,82,92)(80,94,83,91)(81,93,84,96)>;

G:=Group( (1,19,4,22)(2,20,5,23)(3,21,6,24)(7,16,10,13)(8,17,11,14)(9,18,12,15)(25,33,41,35)(26,31,42,36)(27,32,40,34)(28,39,44,48)(29,37,45,46)(30,38,43,47)(49,94,52,91)(50,95,53,92)(51,96,54,93)(55,89,58,86)(56,90,59,87)(57,85,60,88)(61,69,64,72)(62,70,65,67)(63,71,66,68)(73,82,76,79)(74,83,77,80)(75,84,78,81), (1,92,16,70)(2,96,17,68)(3,94,18,72)(4,95,13,67)(5,93,14,71)(6,91,15,69)(7,65,22,50)(8,63,23,54)(9,61,24,52)(10,62,19,53)(11,66,20,51)(12,64,21,49)(25,56,46,81)(26,60,47,79)(27,58,48,83)(28,74,32,89)(29,78,33,87)(30,76,31,85)(34,86,44,77)(35,90,45,75)(36,88,43,73)(37,84,41,59)(38,82,42,57)(39,80,40,55), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,36,4,31)(2,35,5,33)(3,34,6,32)(7,47,10,38)(8,46,11,37)(9,48,12,39)(13,30,16,43)(14,29,17,45)(15,28,18,44)(19,42,22,26)(20,41,23,25)(21,40,24,27)(49,77,52,74)(50,76,53,73)(51,75,54,78)(55,72,58,69)(56,71,59,68)(57,70,60,67)(61,89,64,86)(62,88,65,85)(63,87,66,90)(79,95,82,92)(80,94,83,91)(81,93,84,96) );

G=PermutationGroup([[(1,19,4,22),(2,20,5,23),(3,21,6,24),(7,16,10,13),(8,17,11,14),(9,18,12,15),(25,33,41,35),(26,31,42,36),(27,32,40,34),(28,39,44,48),(29,37,45,46),(30,38,43,47),(49,94,52,91),(50,95,53,92),(51,96,54,93),(55,89,58,86),(56,90,59,87),(57,85,60,88),(61,69,64,72),(62,70,65,67),(63,71,66,68),(73,82,76,79),(74,83,77,80),(75,84,78,81)], [(1,92,16,70),(2,96,17,68),(3,94,18,72),(4,95,13,67),(5,93,14,71),(6,91,15,69),(7,65,22,50),(8,63,23,54),(9,61,24,52),(10,62,19,53),(11,66,20,51),(12,64,21,49),(25,56,46,81),(26,60,47,79),(27,58,48,83),(28,74,32,89),(29,78,33,87),(30,76,31,85),(34,86,44,77),(35,90,45,75),(36,88,43,73),(37,84,41,59),(38,82,42,57),(39,80,40,55)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,36,4,31),(2,35,5,33),(3,34,6,32),(7,47,10,38),(8,46,11,37),(9,48,12,39),(13,30,16,43),(14,29,17,45),(15,28,18,44),(19,42,22,26),(20,41,23,25),(21,40,24,27),(49,77,52,74),(50,76,53,73),(51,75,54,78),(55,72,58,69),(56,71,59,68),(57,70,60,67),(61,89,64,86),(62,88,65,85),(63,87,66,90),(79,95,82,92),(80,94,83,91),(81,93,84,96)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E8A8B8C8D12A12B12C12D12E···12N
order12222234444444444446666688881212121212···12
size11112222222444412121212222441212121222224···4

42 irreducible representations

dim11111122222222244
type+++++++++++--
imageC1C2C2C2C2C4S3D4D4D6D6C4xS3D12C3:D4C3:D4C8.C22Q8.14D6
kernelC4:C4.237D6C6.SD16C2xC4.Dic3C3xC42:C2C22xDic6C2xDic6C42:C2C2xC12C22xC6C4:C4C22xC4C2xC4C2xC4C2xC4C23C6C2
# reps14111813121442224

Matrix representation of C4:C4.237D6 in GL6(F73)

7200000
0720000
0071400
00596600
005712759
0045571466
,
2700000
0270000
0011504848
0023345048
00893923
007285062
,
010000
7210000
00727200
001000
00281201
001628721
,
3280000
31700000
00304300
00134300
0067264627
002632027

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,7,59,57,45,0,0,14,66,12,57,0,0,0,0,7,14,0,0,0,0,59,66],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,11,23,8,72,0,0,50,34,9,8,0,0,48,50,39,50,0,0,48,48,23,62],[0,72,0,0,0,0,1,1,0,0,0,0,0,0,72,1,28,16,0,0,72,0,12,28,0,0,0,0,0,72,0,0,0,0,1,1],[3,31,0,0,0,0,28,70,0,0,0,0,0,0,30,13,67,26,0,0,43,43,26,32,0,0,0,0,46,0,0,0,0,0,27,27] >;

C4:C4.237D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4._{237}D_6
% in TeX

G:=Group("C4:C4.237D6");
// GroupNames label

G:=SmallGroup(192,563);
// by ID

G=gap.SmallGroup(192,563);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,422,387,58,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<