Copied to
clipboard

G = C4⋊C4.237D6order 192 = 26·3

15th non-split extension by C4⋊C4 of D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.237D6, C4.64(C2×D12), (C2×C4).47D12, C4.24(D6⋊C4), (C2×Dic6)⋊11C4, (C2×C12).473D4, C12.144(C2×D4), (C22×C6).77D4, C6.SD1628C2, C42⋊C2.9S3, C12.66(C22×C4), Dic6.27(C2×C4), (C22×C4).128D6, C12.48(C22⋊C4), (C2×C12).331C23, C22.24(D6⋊C4), C2.2(Q8.14D6), C23.62(C3⋊D4), C32(C23.38D4), C6.106(C8.C22), (C22×Dic6).12C2, (C22×C12).153C22, (C2×Dic6).263C22, C4.53(S3×C2×C4), (C2×C4).45(C4×S3), C2.19(C2×D6⋊C4), (C2×C12).93(C2×C4), (C2×C6).460(C2×D4), C6.46(C2×C22⋊C4), (C2×C3⋊C8).88C22, C22.74(C2×C3⋊D4), (C2×C4).242(C3⋊D4), (C3×C4⋊C4).268C22, (C2×C6).16(C22⋊C4), (C2×C4).431(C22×S3), (C2×C4.Dic3).19C2, (C3×C42⋊C2).10C2, SmallGroup(192,563)

Series: Derived Chief Lower central Upper central

C1C12 — C4⋊C4.237D6
C1C3C6C2×C6C2×C12C2×Dic6C22×Dic6 — C4⋊C4.237D6
C3C6C12 — C4⋊C4.237D6
C1C22C22×C4C42⋊C2

Generators and relations for C4⋊C4.237D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=ab-1, dcd-1=c-1 >

Subgroups: 360 in 150 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C3⋊C8, Dic6, Dic6, C2×Dic3, C2×C12, C2×C12, C2×C12, C22×C6, Q8⋊C4, C42⋊C2, C2×M4(2), C22×Q8, C2×C3⋊C8, C4.Dic3, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, C2×Dic6, C22×Dic3, C22×C12, C23.38D4, C6.SD16, C2×C4.Dic3, C3×C42⋊C2, C22×Dic6, C4⋊C4.237D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, D12, C3⋊D4, C22×S3, C2×C22⋊C4, C8.C22, D6⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C23.38D4, C2×D6⋊C4, Q8.14D6, C4⋊C4.237D6

Smallest permutation representation of C4⋊C4.237D6
On 96 points
Generators in S96
(1 19 4 22)(2 20 5 23)(3 21 6 24)(7 16 10 13)(8 17 11 14)(9 18 12 15)(25 33 41 35)(26 31 42 36)(27 32 40 34)(28 39 44 48)(29 37 45 46)(30 38 43 47)(49 94 52 91)(50 95 53 92)(51 96 54 93)(55 89 58 86)(56 90 59 87)(57 85 60 88)(61 69 64 72)(62 70 65 67)(63 71 66 68)(73 82 76 79)(74 83 77 80)(75 84 78 81)
(1 92 16 70)(2 96 17 68)(3 94 18 72)(4 95 13 67)(5 93 14 71)(6 91 15 69)(7 65 22 50)(8 63 23 54)(9 61 24 52)(10 62 19 53)(11 66 20 51)(12 64 21 49)(25 56 46 81)(26 60 47 79)(27 58 48 83)(28 74 32 89)(29 78 33 87)(30 76 31 85)(34 86 44 77)(35 90 45 75)(36 88 43 73)(37 84 41 59)(38 82 42 57)(39 80 40 55)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 36 4 31)(2 35 5 33)(3 34 6 32)(7 47 10 38)(8 46 11 37)(9 48 12 39)(13 30 16 43)(14 29 17 45)(15 28 18 44)(19 42 22 26)(20 41 23 25)(21 40 24 27)(49 77 52 74)(50 76 53 73)(51 75 54 78)(55 72 58 69)(56 71 59 68)(57 70 60 67)(61 89 64 86)(62 88 65 85)(63 87 66 90)(79 95 82 92)(80 94 83 91)(81 93 84 96)

G:=sub<Sym(96)| (1,19,4,22)(2,20,5,23)(3,21,6,24)(7,16,10,13)(8,17,11,14)(9,18,12,15)(25,33,41,35)(26,31,42,36)(27,32,40,34)(28,39,44,48)(29,37,45,46)(30,38,43,47)(49,94,52,91)(50,95,53,92)(51,96,54,93)(55,89,58,86)(56,90,59,87)(57,85,60,88)(61,69,64,72)(62,70,65,67)(63,71,66,68)(73,82,76,79)(74,83,77,80)(75,84,78,81), (1,92,16,70)(2,96,17,68)(3,94,18,72)(4,95,13,67)(5,93,14,71)(6,91,15,69)(7,65,22,50)(8,63,23,54)(9,61,24,52)(10,62,19,53)(11,66,20,51)(12,64,21,49)(25,56,46,81)(26,60,47,79)(27,58,48,83)(28,74,32,89)(29,78,33,87)(30,76,31,85)(34,86,44,77)(35,90,45,75)(36,88,43,73)(37,84,41,59)(38,82,42,57)(39,80,40,55), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,36,4,31)(2,35,5,33)(3,34,6,32)(7,47,10,38)(8,46,11,37)(9,48,12,39)(13,30,16,43)(14,29,17,45)(15,28,18,44)(19,42,22,26)(20,41,23,25)(21,40,24,27)(49,77,52,74)(50,76,53,73)(51,75,54,78)(55,72,58,69)(56,71,59,68)(57,70,60,67)(61,89,64,86)(62,88,65,85)(63,87,66,90)(79,95,82,92)(80,94,83,91)(81,93,84,96)>;

G:=Group( (1,19,4,22)(2,20,5,23)(3,21,6,24)(7,16,10,13)(8,17,11,14)(9,18,12,15)(25,33,41,35)(26,31,42,36)(27,32,40,34)(28,39,44,48)(29,37,45,46)(30,38,43,47)(49,94,52,91)(50,95,53,92)(51,96,54,93)(55,89,58,86)(56,90,59,87)(57,85,60,88)(61,69,64,72)(62,70,65,67)(63,71,66,68)(73,82,76,79)(74,83,77,80)(75,84,78,81), (1,92,16,70)(2,96,17,68)(3,94,18,72)(4,95,13,67)(5,93,14,71)(6,91,15,69)(7,65,22,50)(8,63,23,54)(9,61,24,52)(10,62,19,53)(11,66,20,51)(12,64,21,49)(25,56,46,81)(26,60,47,79)(27,58,48,83)(28,74,32,89)(29,78,33,87)(30,76,31,85)(34,86,44,77)(35,90,45,75)(36,88,43,73)(37,84,41,59)(38,82,42,57)(39,80,40,55), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,36,4,31)(2,35,5,33)(3,34,6,32)(7,47,10,38)(8,46,11,37)(9,48,12,39)(13,30,16,43)(14,29,17,45)(15,28,18,44)(19,42,22,26)(20,41,23,25)(21,40,24,27)(49,77,52,74)(50,76,53,73)(51,75,54,78)(55,72,58,69)(56,71,59,68)(57,70,60,67)(61,89,64,86)(62,88,65,85)(63,87,66,90)(79,95,82,92)(80,94,83,91)(81,93,84,96) );

G=PermutationGroup([[(1,19,4,22),(2,20,5,23),(3,21,6,24),(7,16,10,13),(8,17,11,14),(9,18,12,15),(25,33,41,35),(26,31,42,36),(27,32,40,34),(28,39,44,48),(29,37,45,46),(30,38,43,47),(49,94,52,91),(50,95,53,92),(51,96,54,93),(55,89,58,86),(56,90,59,87),(57,85,60,88),(61,69,64,72),(62,70,65,67),(63,71,66,68),(73,82,76,79),(74,83,77,80),(75,84,78,81)], [(1,92,16,70),(2,96,17,68),(3,94,18,72),(4,95,13,67),(5,93,14,71),(6,91,15,69),(7,65,22,50),(8,63,23,54),(9,61,24,52),(10,62,19,53),(11,66,20,51),(12,64,21,49),(25,56,46,81),(26,60,47,79),(27,58,48,83),(28,74,32,89),(29,78,33,87),(30,76,31,85),(34,86,44,77),(35,90,45,75),(36,88,43,73),(37,84,41,59),(38,82,42,57),(39,80,40,55)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,36,4,31),(2,35,5,33),(3,34,6,32),(7,47,10,38),(8,46,11,37),(9,48,12,39),(13,30,16,43),(14,29,17,45),(15,28,18,44),(19,42,22,26),(20,41,23,25),(21,40,24,27),(49,77,52,74),(50,76,53,73),(51,75,54,78),(55,72,58,69),(56,71,59,68),(57,70,60,67),(61,89,64,86),(62,88,65,85),(63,87,66,90),(79,95,82,92),(80,94,83,91),(81,93,84,96)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E8A8B8C8D12A12B12C12D12E···12N
order12222234444444444446666688881212121212···12
size11112222222444412121212222441212121222224···4

42 irreducible representations

dim11111122222222244
type+++++++++++--
imageC1C2C2C2C2C4S3D4D4D6D6C4×S3D12C3⋊D4C3⋊D4C8.C22Q8.14D6
kernelC4⋊C4.237D6C6.SD16C2×C4.Dic3C3×C42⋊C2C22×Dic6C2×Dic6C42⋊C2C2×C12C22×C6C4⋊C4C22×C4C2×C4C2×C4C2×C4C23C6C2
# reps14111813121442224

Matrix representation of C4⋊C4.237D6 in GL6(𝔽73)

7200000
0720000
0071400
00596600
005712759
0045571466
,
2700000
0270000
0011504848
0023345048
00893923
007285062
,
010000
7210000
00727200
001000
00281201
001628721
,
3280000
31700000
00304300
00134300
0067264627
002632027

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,7,59,57,45,0,0,14,66,12,57,0,0,0,0,7,14,0,0,0,0,59,66],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,11,23,8,72,0,0,50,34,9,8,0,0,48,50,39,50,0,0,48,48,23,62],[0,72,0,0,0,0,1,1,0,0,0,0,0,0,72,1,28,16,0,0,72,0,12,28,0,0,0,0,0,72,0,0,0,0,1,1],[3,31,0,0,0,0,28,70,0,0,0,0,0,0,30,13,67,26,0,0,43,43,26,32,0,0,0,0,46,0,0,0,0,0,27,27] >;

C4⋊C4.237D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4._{237}D_6
% in TeX

G:=Group("C4:C4.237D6");
// GroupNames label

G:=SmallGroup(192,563);
// by ID

G=gap.SmallGroup(192,563);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,422,387,58,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽