Copied to
clipboard

G = D12.C8order 192 = 26·3

1st non-split extension by D12 of C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.1C8, C8.31D12, C24.73D4, Dic6.1C8, (C2×C48)⋊2C2, (C2×C16)⋊2S3, C4.8(S3×C8), C31(D4.C8), C12.18(C2×C8), C2.9(D6⋊C8), C4○D12.1C4, C8○D12.3C2, (C2×C8).322D6, C12.C89C2, C4.41(D6⋊C4), C8.45(C3⋊D4), C6.8(C22⋊C8), (C2×C6).9M4(2), C4.Dic3.1C4, C12.56(C22⋊C4), (C2×C24).421C22, C22.2(C8⋊S3), (C2×C4).97(C4×S3), (C2×C12).231(C2×C4), SmallGroup(192,67)

Series: Derived Chief Lower central Upper central

C1C12 — D12.C8
C1C3C6C12C24C2×C24C8○D12 — D12.C8
C3C6C12 — D12.C8
C1C8C2×C8C2×C16

Generators and relations for D12.C8
 G = < a,b,c | a12=b2=1, c8=a6, bab=a-1, ac=ca, cbc-1=a3b >

2C2
12C2
6C22
6C4
2C6
4S3
3D4
3Q8
6C8
6D4
6C2×C4
2Dic3
2D6
2C16
3M4(2)
3C4○D4
6C16
6M4(2)
6C2×C8
2C3⋊D4
2C4×S3
2C3⋊C8
3M5(2)
3C8○D4
2C48
2C8⋊S3
2S3×C8
2C3⋊C16
3D4.C8

Smallest permutation representation of D12.C8
On 96 points
Generators in S96
(1 70 50 90 26 47 9 78 58 82 18 39)(2 71 51 91 27 48 10 79 59 83 19 40)(3 72 52 92 28 33 11 80 60 84 20 41)(4 73 53 93 29 34 12 65 61 85 21 42)(5 74 54 94 30 35 13 66 62 86 22 43)(6 75 55 95 31 36 14 67 63 87 23 44)(7 76 56 96 32 37 15 68 64 88 24 45)(8 77 57 81 17 38 16 69 49 89 25 46)
(1 39)(2 59)(3 33)(4 53)(5 43)(6 63)(7 37)(8 57)(9 47)(10 51)(11 41)(12 61)(13 35)(14 55)(15 45)(16 49)(17 25)(18 70)(20 80)(21 29)(22 74)(24 68)(26 78)(28 72)(30 66)(32 76)(34 85)(36 95)(38 89)(40 83)(42 93)(44 87)(46 81)(48 91)(50 82)(52 92)(54 86)(56 96)(58 90)(60 84)(62 94)(64 88)(67 75)(71 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,70,50,90,26,47,9,78,58,82,18,39)(2,71,51,91,27,48,10,79,59,83,19,40)(3,72,52,92,28,33,11,80,60,84,20,41)(4,73,53,93,29,34,12,65,61,85,21,42)(5,74,54,94,30,35,13,66,62,86,22,43)(6,75,55,95,31,36,14,67,63,87,23,44)(7,76,56,96,32,37,15,68,64,88,24,45)(8,77,57,81,17,38,16,69,49,89,25,46), (1,39)(2,59)(3,33)(4,53)(5,43)(6,63)(7,37)(8,57)(9,47)(10,51)(11,41)(12,61)(13,35)(14,55)(15,45)(16,49)(17,25)(18,70)(20,80)(21,29)(22,74)(24,68)(26,78)(28,72)(30,66)(32,76)(34,85)(36,95)(38,89)(40,83)(42,93)(44,87)(46,81)(48,91)(50,82)(52,92)(54,86)(56,96)(58,90)(60,84)(62,94)(64,88)(67,75)(71,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,70,50,90,26,47,9,78,58,82,18,39)(2,71,51,91,27,48,10,79,59,83,19,40)(3,72,52,92,28,33,11,80,60,84,20,41)(4,73,53,93,29,34,12,65,61,85,21,42)(5,74,54,94,30,35,13,66,62,86,22,43)(6,75,55,95,31,36,14,67,63,87,23,44)(7,76,56,96,32,37,15,68,64,88,24,45)(8,77,57,81,17,38,16,69,49,89,25,46), (1,39)(2,59)(3,33)(4,53)(5,43)(6,63)(7,37)(8,57)(9,47)(10,51)(11,41)(12,61)(13,35)(14,55)(15,45)(16,49)(17,25)(18,70)(20,80)(21,29)(22,74)(24,68)(26,78)(28,72)(30,66)(32,76)(34,85)(36,95)(38,89)(40,83)(42,93)(44,87)(46,81)(48,91)(50,82)(52,92)(54,86)(56,96)(58,90)(60,84)(62,94)(64,88)(67,75)(71,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,70,50,90,26,47,9,78,58,82,18,39),(2,71,51,91,27,48,10,79,59,83,19,40),(3,72,52,92,28,33,11,80,60,84,20,41),(4,73,53,93,29,34,12,65,61,85,21,42),(5,74,54,94,30,35,13,66,62,86,22,43),(6,75,55,95,31,36,14,67,63,87,23,44),(7,76,56,96,32,37,15,68,64,88,24,45),(8,77,57,81,17,38,16,69,49,89,25,46)], [(1,39),(2,59),(3,33),(4,53),(5,43),(6,63),(7,37),(8,57),(9,47),(10,51),(11,41),(12,61),(13,35),(14,55),(15,45),(16,49),(17,25),(18,70),(20,80),(21,29),(22,74),(24,68),(26,78),(28,72),(30,66),(32,76),(34,85),(36,95),(38,89),(40,83),(42,93),(44,87),(46,81),(48,91),(50,82),(52,92),(54,86),(56,96),(58,90),(60,84),(62,94),(64,88),(67,75),(71,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

60 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D16A···16H16I16J16K16L24A···24H48A···48P
order122234444666888888881212121216···161616161624···2448···48
size11212211212222111122121222222···2121212122···22···2

60 irreducible representations

dim1111111122222222222
type++++++++
imageC1C2C2C2C4C4C8C8S3D4D6M4(2)D12C3⋊D4C4×S3S3×C8C8⋊S3D4.C8D12.C8
kernelD12.C8C12.C8C2×C48C8○D12C4.Dic3C4○D12Dic6D12C2×C16C24C2×C8C2×C6C8C8C2×C4C4C22C3C1
# reps11112244121222244816

Matrix representation of D12.C8 in GL2(𝔽97) generated by

6829
6839
,
6829
5829
,
364
3336
G:=sub<GL(2,GF(97))| [68,68,29,39],[68,58,29,29],[3,33,64,36] >;

D12.C8 in GAP, Magma, Sage, TeX

D_{12}.C_8
% in TeX

G:=Group("D12.C8");
// GroupNames label

G:=SmallGroup(192,67);
// by ID

G=gap.SmallGroup(192,67);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,100,1123,136,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^2=1,c^8=a^6,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

Export

Subgroup lattice of D12.C8 in TeX

׿
×
𝔽