metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.7D4, D24.4C4, C8.17D12, C12.48D8, C8.2(C4×S3), (C2×C8).43D6, C8.C4⋊1S3, C24.22(C2×C4), C4.4(D6⋊C4), (C2×C12).95D4, C12.C8⋊5C2, (C2×C6).4SD16, C4.21(D4⋊S3), (C2×D24).12C2, C3⋊1(M5(2)⋊C2), C6.7(D4⋊C4), C12.4(C22⋊C4), C2.9(C6.D8), (C2×C24).100C22, C22.3(Q8⋊2S3), (C3×C8.C4)⋊9C2, (C2×C4).18(C3⋊D4), SmallGroup(192,54)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24.C4
G = < a,b,c | a24=b2=1, c4=a12, bab=a-1, cac-1=a19, cbc-1=a15b >
Subgroups: 288 in 62 conjugacy classes, 25 normal (23 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, D4, C23, C12, D6, C2×C6, C16, C2×C8, M4(2), D8, C2×D4, C24, C24, D12, C2×C12, C22×S3, C8.C4, M5(2), C2×D8, C3⋊C16, D24, D24, C2×C24, C3×M4(2), C2×D12, M5(2)⋊C2, C12.C8, C3×C8.C4, C2×D24, D24.C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, C4×S3, D12, C3⋊D4, D4⋊C4, D6⋊C4, D4⋊S3, Q8⋊2S3, M5(2)⋊C2, C6.D8, D24.C4
Character table of D24.C4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 12A | 12B | 12C | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 2 | 24 | 24 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 8 | 8 | 2 | 2 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | -1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | -1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ16 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ17 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | -2 | -2 | 2 | 2i | -2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | i | -i | -i | i | complex lifted from C4×S3 |
ρ18 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | -2 | -2 | 2 | -2i | 2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ19 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ23 | 4 | 4 | 4 | 0 | 0 | -2 | -4 | -4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ24 | 4 | 4 | -4 | 0 | 0 | -2 | 4 | -4 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2)⋊C2 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2)⋊C2 |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | -√2 | √6 | √2 | -√6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | √2 | √6 | -√2 | -√6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | -√2 | -√6 | √2 | √6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | √2 | -√6 | -√2 | √6 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 24)(20 23)(21 22)(25 27)(28 48)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)
(1 31 19 37 13 43 7 25)(2 26 20 32 14 38 8 44)(3 45 21 27 15 33 9 39)(4 40 22 46 16 28 10 34)(5 35 23 41 17 47 11 29)(6 30 24 36 18 42 12 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,27)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39), (1,31,19,37,13,43,7,25)(2,26,20,32,14,38,8,44)(3,45,21,27,15,33,9,39)(4,40,22,46,16,28,10,34)(5,35,23,41,17,47,11,29)(6,30,24,36,18,42,12,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,27)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39), (1,31,19,37,13,43,7,25)(2,26,20,32,14,38,8,44)(3,45,21,27,15,33,9,39)(4,40,22,46,16,28,10,34)(5,35,23,41,17,47,11,29)(6,30,24,36,18,42,12,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,24),(20,23),(21,22),(25,27),(28,48),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39)], [(1,31,19,37,13,43,7,25),(2,26,20,32,14,38,8,44),(3,45,21,27,15,33,9,39),(4,40,22,46,16,28,10,34),(5,35,23,41,17,47,11,29),(6,30,24,36,18,42,12,48)]])
Matrix representation of D24.C4 ►in GL4(𝔽97) generated by
18 | 16 | 0 | 0 |
81 | 2 | 0 | 0 |
12 | 0 | 16 | 2 |
12 | 12 | 95 | 18 |
79 | 95 | 0 | 0 |
16 | 18 | 0 | 0 |
60 | 25 | 68 | 58 |
25 | 62 | 29 | 29 |
56 | 15 | 33 | 33 |
82 | 41 | 31 | 33 |
53 | 54 | 56 | 82 |
96 | 53 | 15 | 41 |
G:=sub<GL(4,GF(97))| [18,81,12,12,16,2,0,12,0,0,16,95,0,0,2,18],[79,16,60,25,95,18,25,62,0,0,68,29,0,0,58,29],[56,82,53,96,15,41,54,53,33,31,56,15,33,33,82,41] >;
D24.C4 in GAP, Magma, Sage, TeX
D_{24}.C_4
% in TeX
G:=Group("D24.C4");
// GroupNames label
G:=SmallGroup(192,54);
// by ID
G=gap.SmallGroup(192,54);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,184,675,794,192,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=b^2=1,c^4=a^12,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^15*b>;
// generators/relations
Export