Copied to
clipboard

G = D24.C4order 192 = 26·3

4th non-split extension by D24 of C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.7D4, D24.4C4, C8.17D12, C12.48D8, C8.2(C4xS3), (C2xC8).43D6, C8.C4:1S3, C24.22(C2xC4), C4.4(D6:C4), (C2xC12).95D4, C12.C8:5C2, (C2xC6).4SD16, C4.21(D4:S3), (C2xD24).12C2, C3:1(M5(2):C2), C6.7(D4:C4), C12.4(C22:C4), C2.9(C6.D8), (C2xC24).100C22, C22.3(Q8:2S3), (C3xC8.C4):9C2, (C2xC4).18(C3:D4), SmallGroup(192,54)

Series: Derived Chief Lower central Upper central

C1C24 — D24.C4
C1C3C6C12C2xC12C2xC24C2xD24 — D24.C4
C3C6C12C24 — D24.C4
C1C2C2xC4C2xC8C8.C4

Generators and relations for D24.C4
 G = < a,b,c | a24=b2=1, c4=a12, bab=a-1, cac-1=a19, cbc-1=a15b >

Subgroups: 288 in 62 conjugacy classes, 25 normal (23 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, D4, C23, C12, D6, C2xC6, C16, C2xC8, M4(2), D8, C2xD4, C24, C24, D12, C2xC12, C22xS3, C8.C4, M5(2), C2xD8, C3:C16, D24, D24, C2xC24, C3xM4(2), C2xD12, M5(2):C2, C12.C8, C3xC8.C4, C2xD24, D24.C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D8, SD16, C4xS3, D12, C3:D4, D4:C4, D6:C4, D4:S3, Q8:2S3, M5(2):C2, C6.D8, D24.C4

Character table of D24.C4

 class 12A2B2C2D34A4B6A6B8A8B8C8D8E12A12B12C16A16B16C16D24A24B24C24D24E24F24G24H
 size 112242422224224882241212121244448888
ρ1111111111111111111111111111111    trivial
ρ2111-1-111111111-1-111111111111-1-1-1-1    linear of order 2
ρ3111-1-11111111111111-1-1-1-111111111    linear of order 2
ρ41111111111111-1-1111-1-1-1-11111-1-1-1-1    linear of order 2
ρ511-1-111-111-1-1-11i-i-1-11-ii-ii-11-11-iii-i    linear of order 4
ρ611-11-11-111-1-1-11-ii-1-11-ii-ii-11-11i-i-ii    linear of order 4
ρ711-11-11-111-1-1-11i-i-1-11i-ii-i-11-11-iii-i    linear of order 4
ρ811-1-111-111-1-1-11-ii-1-11i-ii-i-11-11i-i-ii    linear of order 4
ρ92220022222-2-2-2002220000-2-2-2-20000    orthogonal lifted from D4
ρ1022-2002-222-222-200-2-2200002-22-20000    orthogonal lifted from D4
ρ1122200-122-1-122222-1-1-10000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1222200-122-1-1222-2-2-1-1-10000-1-1-1-11111    orthogonal lifted from D6
ρ1322-20022-22-20000022-222-2-200000000    orthogonal lifted from D8
ρ1422-20022-22-20000022-2-2-22200000000    orthogonal lifted from D8
ρ1522-200-1-22-1122-20011-10000-11-11-3-333    orthogonal lifted from D12
ρ1622-200-1-22-1122-20011-10000-11-1133-3-3    orthogonal lifted from D12
ρ1722-200-1-22-11-2-222i-2i11-100001-11-1i-i-ii    complex lifted from C4xS3
ρ1822-200-1-22-11-2-22-2i2i11-100001-11-1-iii-i    complex lifted from C4xS3
ρ19222002-2-22200000-2-2-2--2-2-2--200000000    complex lifted from SD16
ρ20222002-2-22200000-2-2-2-2--2--2-200000000    complex lifted from SD16
ρ2122200-122-1-1-2-2-200-1-1-100001111--3-3--3-3    complex lifted from C3:D4
ρ2222200-122-1-1-2-2-200-1-1-100001111-3--3-3--3    complex lifted from C3:D4
ρ2344400-2-4-4-2-200000222000000000000    orthogonal lifted from Q8:2S3
ρ2444-400-24-4-2200000-2-22000000000000    orthogonal lifted from D4:S3, Schur index 2
ρ254-4000400-4022-220000000000220-2200000    orthogonal lifted from M5(2):C2
ρ264-4000400-40-22220000000000-2202200000    orthogonal lifted from M5(2):C2
ρ274-4000-2002022-22000-232300000-262-60000    orthogonal faithful
ρ284-4000-20020-222200023-230000026-2-60000    orthogonal faithful
ρ294-4000-2002022-2200023-2300000-2-6260000    orthogonal faithful
ρ304-4000-20020-2222000-2323000002-6-260000    orthogonal faithful

Smallest permutation representation of D24.C4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 24)(20 23)(21 22)(25 27)(28 48)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)
(1 31 19 37 13 43 7 25)(2 26 20 32 14 38 8 44)(3 45 21 27 15 33 9 39)(4 40 22 46 16 28 10 34)(5 35 23 41 17 47 11 29)(6 30 24 36 18 42 12 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,27)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39), (1,31,19,37,13,43,7,25)(2,26,20,32,14,38,8,44)(3,45,21,27,15,33,9,39)(4,40,22,46,16,28,10,34)(5,35,23,41,17,47,11,29)(6,30,24,36,18,42,12,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,27)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39), (1,31,19,37,13,43,7,25)(2,26,20,32,14,38,8,44)(3,45,21,27,15,33,9,39)(4,40,22,46,16,28,10,34)(5,35,23,41,17,47,11,29)(6,30,24,36,18,42,12,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,24),(20,23),(21,22),(25,27),(28,48),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39)], [(1,31,19,37,13,43,7,25),(2,26,20,32,14,38,8,44),(3,45,21,27,15,33,9,39),(4,40,22,46,16,28,10,34),(5,35,23,41,17,47,11,29),(6,30,24,36,18,42,12,48)]])

Matrix representation of D24.C4 in GL4(F97) generated by

181600
81200
120162
12129518
,
799500
161800
60256858
25622929
,
56153333
82413133
53545682
96531541
G:=sub<GL(4,GF(97))| [18,81,12,12,16,2,0,12,0,0,16,95,0,0,2,18],[79,16,60,25,95,18,25,62,0,0,68,29,0,0,58,29],[56,82,53,96,15,41,54,53,33,31,56,15,33,33,82,41] >;

D24.C4 in GAP, Magma, Sage, TeX

D_{24}.C_4
% in TeX

G:=Group("D24.C4");
// GroupNames label

G:=SmallGroup(192,54);
// by ID

G=gap.SmallGroup(192,54);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,184,675,794,192,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=1,c^4=a^12,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^15*b>;
// generators/relations

Export

Character table of D24.C4 in TeX

׿
x
:
Z
F
o
wr
Q
<