metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.7D4, D24.4C4, C8.17D12, C12.48D8, C8.2(C4xS3), (C2xC8).43D6, C8.C4:1S3, C24.22(C2xC4), C4.4(D6:C4), (C2xC12).95D4, C12.C8:5C2, (C2xC6).4SD16, C4.21(D4:S3), (C2xD24).12C2, C3:1(M5(2):C2), C6.7(D4:C4), C12.4(C22:C4), C2.9(C6.D8), (C2xC24).100C22, C22.3(Q8:2S3), (C3xC8.C4):9C2, (C2xC4).18(C3:D4), SmallGroup(192,54)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24.C4
G = < a,b,c | a24=b2=1, c4=a12, bab=a-1, cac-1=a19, cbc-1=a15b >
Subgroups: 288 in 62 conjugacy classes, 25 normal (23 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, D4, C23, C12, D6, C2xC6, C16, C2xC8, M4(2), D8, C2xD4, C24, C24, D12, C2xC12, C22xS3, C8.C4, M5(2), C2xD8, C3:C16, D24, D24, C2xC24, C3xM4(2), C2xD12, M5(2):C2, C12.C8, C3xC8.C4, C2xD24, D24.C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D8, SD16, C4xS3, D12, C3:D4, D4:C4, D6:C4, D4:S3, Q8:2S3, M5(2):C2, C6.D8, D24.C4
Character table of D24.C4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 12A | 12B | 12C | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 2 | 24 | 24 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 8 | 8 | 2 | 2 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | -1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | -1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ16 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ17 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | -2 | -2 | 2 | 2i | -2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | i | -i | -i | i | complex lifted from C4xS3 |
ρ18 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | -2 | -2 | 2 | -2i | 2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -i | i | i | -i | complex lifted from C4xS3 |
ρ19 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√-3 | √-3 | -√-3 | √-3 | complex lifted from C3:D4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √-3 | -√-3 | √-3 | -√-3 | complex lifted from C3:D4 |
ρ23 | 4 | 4 | 4 | 0 | 0 | -2 | -4 | -4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8:2S3 |
ρ24 | 4 | 4 | -4 | 0 | 0 | -2 | 4 | -4 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4:S3, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2):C2 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2):C2 |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | -√2 | √6 | √2 | -√6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | √2 | √6 | -√2 | -√6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | -√2 | -√6 | √2 | √6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | √2 | -√6 | -√2 | √6 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 24)(20 23)(21 22)(25 27)(28 48)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)
(1 31 19 37 13 43 7 25)(2 26 20 32 14 38 8 44)(3 45 21 27 15 33 9 39)(4 40 22 46 16 28 10 34)(5 35 23 41 17 47 11 29)(6 30 24 36 18 42 12 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,27)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39), (1,31,19,37,13,43,7,25)(2,26,20,32,14,38,8,44)(3,45,21,27,15,33,9,39)(4,40,22,46,16,28,10,34)(5,35,23,41,17,47,11,29)(6,30,24,36,18,42,12,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,27)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39), (1,31,19,37,13,43,7,25)(2,26,20,32,14,38,8,44)(3,45,21,27,15,33,9,39)(4,40,22,46,16,28,10,34)(5,35,23,41,17,47,11,29)(6,30,24,36,18,42,12,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,24),(20,23),(21,22),(25,27),(28,48),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39)], [(1,31,19,37,13,43,7,25),(2,26,20,32,14,38,8,44),(3,45,21,27,15,33,9,39),(4,40,22,46,16,28,10,34),(5,35,23,41,17,47,11,29),(6,30,24,36,18,42,12,48)]])
Matrix representation of D24.C4 ►in GL4(F97) generated by
18 | 16 | 0 | 0 |
81 | 2 | 0 | 0 |
12 | 0 | 16 | 2 |
12 | 12 | 95 | 18 |
79 | 95 | 0 | 0 |
16 | 18 | 0 | 0 |
60 | 25 | 68 | 58 |
25 | 62 | 29 | 29 |
56 | 15 | 33 | 33 |
82 | 41 | 31 | 33 |
53 | 54 | 56 | 82 |
96 | 53 | 15 | 41 |
G:=sub<GL(4,GF(97))| [18,81,12,12,16,2,0,12,0,0,16,95,0,0,2,18],[79,16,60,25,95,18,25,62,0,0,68,29,0,0,58,29],[56,82,53,96,15,41,54,53,33,31,56,15,33,33,82,41] >;
D24.C4 in GAP, Magma, Sage, TeX
D_{24}.C_4
% in TeX
G:=Group("D24.C4");
// GroupNames label
G:=SmallGroup(192,54);
// by ID
G=gap.SmallGroup(192,54);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,184,675,794,192,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=b^2=1,c^4=a^12,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^15*b>;
// generators/relations
Export