Extensions 1→N→G→Q→1 with N=C4×C8 and Q=S3

Direct product G=N×Q with N=C4×C8 and Q=S3
dρLabelID
S3×C4×C896S3xC4xC8192,243

Semidirect products G=N:Q with N=C4×C8 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C4×C8)⋊1S3 = C4.17D24φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):1S3192,18
(C4×C8)⋊2S3 = C42.282D6φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):2S3192,244
(C4×C8)⋊3S3 = C8×D12φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):3S3192,245
(C4×C8)⋊4S3 = C42.243D6φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):4S3192,249
(C4×C8)⋊5S3 = C4.5D24φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):5S3192,253
(C4×C8)⋊6S3 = C42.264D6φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):6S3192,256
(C4×C8)⋊7S3 = C4×D24φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):7S3192,251
(C4×C8)⋊8S3 = C124D8φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):8S3192,254
(C4×C8)⋊9S3 = C8.8D12φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):9S3192,255
(C4×C8)⋊10S3 = D2411C4φ: S3/C3C2 ⊆ Aut C4×C8482(C4xC8):10S3192,259
(C4×C8)⋊11S3 = C4×C24⋊C2φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):11S3192,250
(C4×C8)⋊12S3 = C85D12φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):12S3192,252
(C4×C8)⋊13S3 = C4×C8⋊S3φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):13S3192,246
(C4×C8)⋊14S3 = C86D12φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):14S3192,247
(C4×C8)⋊15S3 = D6.C42φ: S3/C3C2 ⊆ Aut C4×C896(C4xC8):15S3192,248

Non-split extensions G=N.Q with N=C4×C8 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C4×C8).1S3 = C42.279D6φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).1S3192,13
(C4×C8).2S3 = C4.8Dic12φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).2S3192,15
(C4×C8).3S3 = C12⋊C16φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).3S3192,21
(C4×C8).4S3 = C8×Dic6φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).4S3192,237
(C4×C8).5S3 = C12.14Q16φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).5S3192,240
(C4×C8).6S3 = C241C8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).6S3192,17
(C4×C8).7S3 = C248Q8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).7S3192,241
(C4×C8).8S3 = C4×Dic12φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).8S3192,257
(C4×C8).9S3 = C124Q16φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).9S3192,258
(C4×C8).10S3 = C24.13Q8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).10S3192,242
(C4×C8).11S3 = C24.1C8φ: S3/C3C2 ⊆ Aut C4×C8482(C4xC8).11S3192,22
(C4×C8).12S3 = C242C8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).12S3192,16
(C4×C8).13S3 = C249Q8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).13S3192,239
(C4×C8).14S3 = C24⋊C8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).14S3192,14
(C4×C8).15S3 = C24.C8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).15S3192,20
(C4×C8).16S3 = C2412Q8φ: S3/C3C2 ⊆ Aut C4×C8192(C4xC8).16S3192,238
(C4×C8).17S3 = C8×C3⋊C8central extension (φ=1)192(C4xC8).17S3192,12
(C4×C8).18S3 = C4×C3⋊C16central extension (φ=1)192(C4xC8).18S3192,19

׿
×
𝔽