extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C8)⋊1S3 = C4.17D24 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):1S3 | 192,18 |
(C4×C8)⋊2S3 = C42.282D6 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):2S3 | 192,244 |
(C4×C8)⋊3S3 = C8×D12 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):3S3 | 192,245 |
(C4×C8)⋊4S3 = C42.243D6 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):4S3 | 192,249 |
(C4×C8)⋊5S3 = C4.5D24 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):5S3 | 192,253 |
(C4×C8)⋊6S3 = C42.264D6 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):6S3 | 192,256 |
(C4×C8)⋊7S3 = C4×D24 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):7S3 | 192,251 |
(C4×C8)⋊8S3 = C12⋊4D8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):8S3 | 192,254 |
(C4×C8)⋊9S3 = C8.8D12 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):9S3 | 192,255 |
(C4×C8)⋊10S3 = D24⋊11C4 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 48 | 2 | (C4xC8):10S3 | 192,259 |
(C4×C8)⋊11S3 = C4×C24⋊C2 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):11S3 | 192,250 |
(C4×C8)⋊12S3 = C8⋊5D12 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):12S3 | 192,252 |
(C4×C8)⋊13S3 = C4×C8⋊S3 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):13S3 | 192,246 |
(C4×C8)⋊14S3 = C8⋊6D12 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):14S3 | 192,247 |
(C4×C8)⋊15S3 = D6.C42 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 96 | | (C4xC8):15S3 | 192,248 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C8).1S3 = C42.279D6 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).1S3 | 192,13 |
(C4×C8).2S3 = C4.8Dic12 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).2S3 | 192,15 |
(C4×C8).3S3 = C12⋊C16 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).3S3 | 192,21 |
(C4×C8).4S3 = C8×Dic6 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).4S3 | 192,237 |
(C4×C8).5S3 = C12.14Q16 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).5S3 | 192,240 |
(C4×C8).6S3 = C24⋊1C8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).6S3 | 192,17 |
(C4×C8).7S3 = C24⋊8Q8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).7S3 | 192,241 |
(C4×C8).8S3 = C4×Dic12 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).8S3 | 192,257 |
(C4×C8).9S3 = C12⋊4Q16 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).9S3 | 192,258 |
(C4×C8).10S3 = C24.13Q8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).10S3 | 192,242 |
(C4×C8).11S3 = C24.1C8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 48 | 2 | (C4xC8).11S3 | 192,22 |
(C4×C8).12S3 = C24⋊2C8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).12S3 | 192,16 |
(C4×C8).13S3 = C24⋊9Q8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).13S3 | 192,239 |
(C4×C8).14S3 = C24⋊C8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).14S3 | 192,14 |
(C4×C8).15S3 = C24.C8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).15S3 | 192,20 |
(C4×C8).16S3 = C24⋊12Q8 | φ: S3/C3 → C2 ⊆ Aut C4×C8 | 192 | | (C4xC8).16S3 | 192,238 |
(C4×C8).17S3 = C8×C3⋊C8 | central extension (φ=1) | 192 | | (C4xC8).17S3 | 192,12 |
(C4×C8).18S3 = C4×C3⋊C16 | central extension (φ=1) | 192 | | (C4xC8).18S3 | 192,19 |