Copied to
clipboard

G = C8.8D12order 192 = 26·3

4th non-split extension by C8 of D12 acting via D12/C12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.8D12, C24.58D4, C42.263D6, (C4×C8)⋊9S3, (C4×C24)⋊14C2, (C2×D24).2C2, C6.4(C4○D8), (C2×C4).62D12, (C2×C8).318D6, C4.32(C2×D12), C427S31C2, (C2×Dic12)⋊1C2, C2.7(C4○D24), (C2×C12).352D4, C12.275(C2×D4), C6.5(C41D4), C31(C8.12D4), C2.7(C4⋊D12), (C2×D12).4C22, C22.92(C2×D12), (C4×C12).309C22, (C2×C24).390C22, (C2×C12).725C23, (C2×Dic6).3C22, (C2×C24⋊C2)⋊8C2, (C2×C6).108(C2×D4), (C2×C4).668(C22×S3), SmallGroup(192,255)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C8.8D12
C1C3C6C12C2×C12C2×D12C427S3 — C8.8D12
C3C6C2×C12 — C8.8D12
C1C22C42C4×C8

Generators and relations for C8.8D12
 G = < a,b,c | a8=b12=1, c2=a4, ab=ba, cac-1=a-1, cbc-1=a4b-1 >

Subgroups: 472 in 130 conjugacy classes, 47 normal (23 characteristic)
C1, C2, C2 [×2], C2 [×2], C3, C4 [×2], C4 [×4], C22, C22 [×6], S3 [×2], C6, C6 [×2], C8 [×4], C2×C4, C2×C4 [×2], C2×C4 [×2], D4 [×4], Q8 [×4], C23 [×2], Dic3 [×2], C12 [×2], C12 [×2], D6 [×6], C2×C6, C42, C22⋊C4 [×4], C2×C8 [×2], D8 [×2], SD16 [×4], Q16 [×2], C2×D4 [×2], C2×Q8 [×2], C24 [×4], Dic6 [×4], D12 [×4], C2×Dic3 [×2], C2×C12, C2×C12 [×2], C22×S3 [×2], C4×C8, C4.4D4 [×2], C2×D8, C2×SD16 [×2], C2×Q16, C24⋊C2 [×4], D24 [×2], Dic12 [×2], D6⋊C4 [×4], C4×C12, C2×C24 [×2], C2×Dic6 [×2], C2×D12 [×2], C8.12D4, C4×C24, C427S3 [×2], C2×C24⋊C2 [×2], C2×D24, C2×Dic12, C8.8D12
Quotients: C1, C2 [×7], C22 [×7], S3, D4 [×6], C23, D6 [×3], C2×D4 [×3], D12 [×6], C22×S3, C41D4, C4○D8 [×2], C2×D12 [×3], C8.12D4, C4⋊D12, C4○D24 [×2], C8.8D12

Smallest permutation representation of C8.8D12
On 96 points
Generators in S96
(1 29 47 67 73 57 20 94)(2 30 48 68 74 58 21 95)(3 31 37 69 75 59 22 96)(4 32 38 70 76 60 23 85)(5 33 39 71 77 49 24 86)(6 34 40 72 78 50 13 87)(7 35 41 61 79 51 14 88)(8 36 42 62 80 52 15 89)(9 25 43 63 81 53 16 90)(10 26 44 64 82 54 17 91)(11 27 45 65 83 55 18 92)(12 28 46 66 84 56 19 93)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 84 73 12)(2 11 74 83)(3 82 75 10)(4 9 76 81)(5 80 77 8)(6 7 78 79)(13 41 40 14)(15 39 42 24)(16 23 43 38)(17 37 44 22)(18 21 45 48)(19 47 46 20)(25 70 53 85)(26 96 54 69)(27 68 55 95)(28 94 56 67)(29 66 57 93)(30 92 58 65)(31 64 59 91)(32 90 60 63)(33 62 49 89)(34 88 50 61)(35 72 51 87)(36 86 52 71)

G:=sub<Sym(96)| (1,29,47,67,73,57,20,94)(2,30,48,68,74,58,21,95)(3,31,37,69,75,59,22,96)(4,32,38,70,76,60,23,85)(5,33,39,71,77,49,24,86)(6,34,40,72,78,50,13,87)(7,35,41,61,79,51,14,88)(8,36,42,62,80,52,15,89)(9,25,43,63,81,53,16,90)(10,26,44,64,82,54,17,91)(11,27,45,65,83,55,18,92)(12,28,46,66,84,56,19,93), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,84,73,12)(2,11,74,83)(3,82,75,10)(4,9,76,81)(5,80,77,8)(6,7,78,79)(13,41,40,14)(15,39,42,24)(16,23,43,38)(17,37,44,22)(18,21,45,48)(19,47,46,20)(25,70,53,85)(26,96,54,69)(27,68,55,95)(28,94,56,67)(29,66,57,93)(30,92,58,65)(31,64,59,91)(32,90,60,63)(33,62,49,89)(34,88,50,61)(35,72,51,87)(36,86,52,71)>;

G:=Group( (1,29,47,67,73,57,20,94)(2,30,48,68,74,58,21,95)(3,31,37,69,75,59,22,96)(4,32,38,70,76,60,23,85)(5,33,39,71,77,49,24,86)(6,34,40,72,78,50,13,87)(7,35,41,61,79,51,14,88)(8,36,42,62,80,52,15,89)(9,25,43,63,81,53,16,90)(10,26,44,64,82,54,17,91)(11,27,45,65,83,55,18,92)(12,28,46,66,84,56,19,93), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,84,73,12)(2,11,74,83)(3,82,75,10)(4,9,76,81)(5,80,77,8)(6,7,78,79)(13,41,40,14)(15,39,42,24)(16,23,43,38)(17,37,44,22)(18,21,45,48)(19,47,46,20)(25,70,53,85)(26,96,54,69)(27,68,55,95)(28,94,56,67)(29,66,57,93)(30,92,58,65)(31,64,59,91)(32,90,60,63)(33,62,49,89)(34,88,50,61)(35,72,51,87)(36,86,52,71) );

G=PermutationGroup([(1,29,47,67,73,57,20,94),(2,30,48,68,74,58,21,95),(3,31,37,69,75,59,22,96),(4,32,38,70,76,60,23,85),(5,33,39,71,77,49,24,86),(6,34,40,72,78,50,13,87),(7,35,41,61,79,51,14,88),(8,36,42,62,80,52,15,89),(9,25,43,63,81,53,16,90),(10,26,44,64,82,54,17,91),(11,27,45,65,83,55,18,92),(12,28,46,66,84,56,19,93)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,84,73,12),(2,11,74,83),(3,82,75,10),(4,9,76,81),(5,80,77,8),(6,7,78,79),(13,41,40,14),(15,39,42,24),(16,23,43,38),(17,37,44,22),(18,21,45,48),(19,47,46,20),(25,70,53,85),(26,96,54,69),(27,68,55,95),(28,94,56,67),(29,66,57,93),(30,92,58,65),(31,64,59,91),(32,90,60,63),(33,62,49,89),(34,88,50,61),(35,72,51,87),(36,86,52,71)])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G4H6A6B6C8A···8H12A···12L24A···24P
order12222234···4446668···812···1224···24
size1111242422···224242222···22···22···2

54 irreducible representations

dim111111222222222
type+++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D12D12C4○D8C4○D24
kernelC8.8D12C4×C24C427S3C2×C24⋊C2C2×D24C2×Dic12C4×C8C24C2×C12C42C2×C8C8C2×C4C6C2
# reps1122111421284816

Matrix representation of C8.8D12 in GL4(𝔽73) generated by

1000
0100
00048
003832
,
76600
71400
00468
005527
,
76600
596600
00468
00027
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,38,0,0,48,32],[7,7,0,0,66,14,0,0,0,0,46,55,0,0,8,27],[7,59,0,0,66,66,0,0,0,0,46,0,0,0,8,27] >;

C8.8D12 in GAP, Magma, Sage, TeX

C_8._8D_{12}
% in TeX

G:=Group("C8.8D12");
// GroupNames label

G:=SmallGroup(192,255);
// by ID

G=gap.SmallGroup(192,255);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,58,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=1,c^2=a^4,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^4*b^-1>;
// generators/relations

׿
×
𝔽