Copied to
clipboard

G = C85D12order 192 = 26·3

2nd semidirect product of C8 and D12 acting via D12/C12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C85D12, C2423D4, C127SD16, C42.260D6, (C4×C8)⋊12S3, (C4×C24)⋊17C2, C31(C85D4), C41(C24⋊C2), C122Q81C2, (C2×C4).79D12, (C2×C8).317D6, C4.30(C2×D12), C6.4(C2×SD16), (C2×C12).376D4, C12.273(C2×D4), C4⋊D12.1C2, C6.3(C41D4), C2.5(C4⋊D12), (C2×D12).1C22, C22.89(C2×D12), (C2×C24).389C22, (C2×C12).722C23, (C4×C12).306C22, (C2×Dic6).2C22, (C2×C24⋊C2)⋊7C2, C2.7(C2×C24⋊C2), (C2×C6).105(C2×D4), (C2×C4).665(C22×S3), SmallGroup(192,252)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C85D12
C1C3C6C12C2×C12C2×D12C4⋊D12 — C85D12
C3C6C2×C12 — C85D12
C1C22C42C4×C8

Generators and relations for C85D12
 G = < a,b,c | a8=b12=c2=1, ab=ba, cac=a3, cbc=b-1 >

Subgroups: 536 in 142 conjugacy classes, 55 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C42, C4⋊C4, C2×C8, SD16, C2×D4, C2×Q8, C24, Dic6, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C4×C8, C41D4, C4⋊Q8, C2×SD16, C24⋊C2, C4⋊Dic3, C4×C12, C2×C24, C2×Dic6, C2×D12, C2×D12, C85D4, C4×C24, C122Q8, C4⋊D12, C2×C24⋊C2, C85D12
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, D12, C22×S3, C41D4, C2×SD16, C24⋊C2, C2×D12, C85D4, C4⋊D12, C2×C24⋊C2, C85D12

Smallest permutation representation of C85D12
On 96 points
Generators in S96
(1 61 78 60 20 96 25 37)(2 62 79 49 21 85 26 38)(3 63 80 50 22 86 27 39)(4 64 81 51 23 87 28 40)(5 65 82 52 24 88 29 41)(6 66 83 53 13 89 30 42)(7 67 84 54 14 90 31 43)(8 68 73 55 15 91 32 44)(9 69 74 56 16 92 33 45)(10 70 75 57 17 93 34 46)(11 71 76 58 18 94 35 47)(12 72 77 59 19 95 36 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 14)(15 24)(16 23)(17 22)(18 21)(19 20)(25 77)(26 76)(27 75)(28 74)(29 73)(30 84)(31 83)(32 82)(33 81)(34 80)(35 79)(36 78)(37 95)(38 94)(39 93)(40 92)(41 91)(42 90)(43 89)(44 88)(45 87)(46 86)(47 85)(48 96)(49 71)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)(57 63)(58 62)(59 61)(60 72)

G:=sub<Sym(96)| (1,61,78,60,20,96,25,37)(2,62,79,49,21,85,26,38)(3,63,80,50,22,86,27,39)(4,64,81,51,23,87,28,40)(5,65,82,52,24,88,29,41)(6,66,83,53,13,89,30,42)(7,67,84,54,14,90,31,43)(8,68,73,55,15,91,32,44)(9,69,74,56,16,92,33,45)(10,70,75,57,17,93,34,46)(11,71,76,58,18,94,35,47)(12,72,77,59,19,95,36,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,77)(26,76)(27,75)(28,74)(29,73)(30,84)(31,83)(32,82)(33,81)(34,80)(35,79)(36,78)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)(47,85)(48,96)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(60,72)>;

G:=Group( (1,61,78,60,20,96,25,37)(2,62,79,49,21,85,26,38)(3,63,80,50,22,86,27,39)(4,64,81,51,23,87,28,40)(5,65,82,52,24,88,29,41)(6,66,83,53,13,89,30,42)(7,67,84,54,14,90,31,43)(8,68,73,55,15,91,32,44)(9,69,74,56,16,92,33,45)(10,70,75,57,17,93,34,46)(11,71,76,58,18,94,35,47)(12,72,77,59,19,95,36,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,77)(26,76)(27,75)(28,74)(29,73)(30,84)(31,83)(32,82)(33,81)(34,80)(35,79)(36,78)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)(47,85)(48,96)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(60,72) );

G=PermutationGroup([[(1,61,78,60,20,96,25,37),(2,62,79,49,21,85,26,38),(3,63,80,50,22,86,27,39),(4,64,81,51,23,87,28,40),(5,65,82,52,24,88,29,41),(6,66,83,53,13,89,30,42),(7,67,84,54,14,90,31,43),(8,68,73,55,15,91,32,44),(9,69,74,56,16,92,33,45),(10,70,75,57,17,93,34,46),(11,71,76,58,18,94,35,47),(12,72,77,59,19,95,36,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14),(15,24),(16,23),(17,22),(18,21),(19,20),(25,77),(26,76),(27,75),(28,74),(29,73),(30,84),(31,83),(32,82),(33,81),(34,80),(35,79),(36,78),(37,95),(38,94),(39,93),(40,92),(41,91),(42,90),(43,89),(44,88),(45,87),(46,86),(47,85),(48,96),(49,71),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64),(57,63),(58,62),(59,61),(60,72)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G4H6A6B6C8A···8H12A···12L24A···24P
order12222234···4446668···812···1224···24
size1111242422···224242222···22···22···2

54 irreducible representations

dim11111222222222
type++++++++++++
imageC1C2C2C2C2S3D4D4D6D6SD16D12D12C24⋊C2
kernelC85D12C4×C24C122Q8C4⋊D12C2×C24⋊C2C4×C8C24C2×C12C42C2×C8C12C8C2×C4C4
# reps111141421288416

Matrix representation of C85D12 in GL6(𝔽73)

7200000
0720000
0006100
0061200
0000720
0000072
,
7220000
7210000
001200
00727200
000001
0000721
,
7220000
010000
001200
0007200
0000721
000001

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,6,0,0,0,0,61,12,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,72,0,0,0,0,2,1,0,0,0,0,0,0,1,72,0,0,0,0,2,72,0,0,0,0,0,0,0,72,0,0,0,0,1,1],[72,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,2,72,0,0,0,0,0,0,72,0,0,0,0,0,1,1] >;

C85D12 in GAP, Magma, Sage, TeX

C_8\rtimes_5D_{12}
% in TeX

G:=Group("C8:5D12");
// GroupNames label

G:=SmallGroup(192,252);
// by ID

G=gap.SmallGroup(192,252);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,58,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=c^2=1,a*b=b*a,c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽