extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C24)⋊1C2 = C4.17D24 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):1C2 | 192,18 |
(C4×C24)⋊2C2 = C3×D4⋊C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):2C2 | 192,131 |
(C4×C24)⋊3C2 = C42.282D6 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):3C2 | 192,244 |
(C4×C24)⋊4C2 = C42.243D6 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):4C2 | 192,249 |
(C4×C24)⋊5C2 = C4.5D24 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):5C2 | 192,253 |
(C4×C24)⋊6C2 = C42.264D6 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):6C2 | 192,256 |
(C4×C24)⋊7C2 = C3×C42.12C4 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):7C2 | 192,864 |
(C4×C24)⋊8C2 = C3×C42.7C22 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):8C2 | 192,866 |
(C4×C24)⋊9C2 = D4×C24 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):9C2 | 192,867 |
(C4×C24)⋊10C2 = C3×C4.4D8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):10C2 | 192,919 |
(C4×C24)⋊11C2 = C3×C42.78C22 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):11C2 | 192,921 |
(C4×C24)⋊12C2 = C4×D24 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):12C2 | 192,251 |
(C4×C24)⋊13C2 = C12⋊4D8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):13C2 | 192,254 |
(C4×C24)⋊14C2 = C8.8D12 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):14C2 | 192,255 |
(C4×C24)⋊15C2 = D24⋊11C4 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 48 | 2 | (C4xC24):15C2 | 192,259 |
(C4×C24)⋊16C2 = C4×C24⋊C2 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):16C2 | 192,250 |
(C4×C24)⋊17C2 = C8⋊5D12 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):17C2 | 192,252 |
(C4×C24)⋊18C2 = C12×D8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):18C2 | 192,870 |
(C4×C24)⋊19C2 = C3×C8⋊4D4 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):19C2 | 192,926 |
(C4×C24)⋊20C2 = C3×C8.12D4 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):20C2 | 192,928 |
(C4×C24)⋊21C2 = C3×C8○D8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 48 | 2 | (C4xC24):21C2 | 192,876 |
(C4×C24)⋊22C2 = S3×C4×C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):22C2 | 192,243 |
(C4×C24)⋊23C2 = C8×D12 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):23C2 | 192,245 |
(C4×C24)⋊24C2 = C4×C8⋊S3 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):24C2 | 192,246 |
(C4×C24)⋊25C2 = C8⋊6D12 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):25C2 | 192,247 |
(C4×C24)⋊26C2 = D6.C42 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):26C2 | 192,248 |
(C4×C24)⋊27C2 = C12×SD16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):27C2 | 192,871 |
(C4×C24)⋊28C2 = C3×C8⋊5D4 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):28C2 | 192,925 |
(C4×C24)⋊29C2 = C12×M4(2) | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):29C2 | 192,837 |
(C4×C24)⋊30C2 = C3×C8○2M4(2) | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):30C2 | 192,838 |
(C4×C24)⋊31C2 = C3×C8⋊6D4 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 96 | | (C4xC24):31C2 | 192,869 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C24).1C2 = C42.279D6 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).1C2 | 192,13 |
(C4×C24).2C2 = C4.8Dic12 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).2C2 | 192,15 |
(C4×C24).3C2 = C3×Q8⋊C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).3C2 | 192,132 |
(C4×C24).4C2 = C3×C4⋊C16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).4C2 | 192,169 |
(C4×C24).5C2 = C12.14Q16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).5C2 | 192,240 |
(C4×C24).6C2 = Q8×C24 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).6C2 | 192,878 |
(C4×C24).7C2 = C3×C4.SD16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).7C2 | 192,920 |
(C4×C24).8C2 = C24⋊1C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).8C2 | 192,17 |
(C4×C24).9C2 = C24⋊8Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).9C2 | 192,241 |
(C4×C24).10C2 = C4×Dic12 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).10C2 | 192,257 |
(C4×C24).11C2 = C12⋊4Q16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).11C2 | 192,258 |
(C4×C24).12C2 = C24.13Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).12C2 | 192,242 |
(C4×C24).13C2 = C24.1C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 48 | 2 | (C4xC24).13C2 | 192,22 |
(C4×C24).14C2 = C24⋊2C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).14C2 | 192,16 |
(C4×C24).15C2 = C24⋊9Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).15C2 | 192,239 |
(C4×C24).16C2 = C3×C8⋊1C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).16C2 | 192,141 |
(C4×C24).17C2 = C12×Q16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).17C2 | 192,872 |
(C4×C24).18C2 = C3×C4⋊Q16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).18C2 | 192,927 |
(C4×C24).19C2 = C3×C8⋊2Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).19C2 | 192,933 |
(C4×C24).20C2 = C3×C8.5Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).20C2 | 192,932 |
(C4×C24).21C2 = C3×C8.C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 48 | 2 | (C4xC24).21C2 | 192,170 |
(C4×C24).22C2 = C8×C3⋊C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).22C2 | 192,12 |
(C4×C24).23C2 = C24⋊C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).23C2 | 192,14 |
(C4×C24).24C2 = C4×C3⋊C16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).24C2 | 192,19 |
(C4×C24).25C2 = C24.C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).25C2 | 192,20 |
(C4×C24).26C2 = C12⋊C16 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).26C2 | 192,21 |
(C4×C24).27C2 = C8×Dic6 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).27C2 | 192,237 |
(C4×C24).28C2 = C24⋊12Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).28C2 | 192,238 |
(C4×C24).29C2 = C3×C8⋊2C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).29C2 | 192,140 |
(C4×C24).30C2 = C3×C8⋊3Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).30C2 | 192,931 |
(C4×C24).31C2 = C3×C8⋊C8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).31C2 | 192,128 |
(C4×C24).32C2 = C3×C16⋊5C4 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).32C2 | 192,152 |
(C4×C24).33C2 = C3×C8⋊4Q8 | φ: C2/C1 → C2 ⊆ Aut C4×C24 | 192 | | (C4xC24).33C2 | 192,879 |