direct product, abelian, monomial, 2-elementary
Aliases: C4×C24, SmallGroup(96,46)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C4×C24 |
C1 — C4×C24 |
C1 — C4×C24 |
Generators and relations for C4×C24
G = < a,b | a4=b24=1, ab=ba >
(1 41 68 80)(2 42 69 81)(3 43 70 82)(4 44 71 83)(5 45 72 84)(6 46 49 85)(7 47 50 86)(8 48 51 87)(9 25 52 88)(10 26 53 89)(11 27 54 90)(12 28 55 91)(13 29 56 92)(14 30 57 93)(15 31 58 94)(16 32 59 95)(17 33 60 96)(18 34 61 73)(19 35 62 74)(20 36 63 75)(21 37 64 76)(22 38 65 77)(23 39 66 78)(24 40 67 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
G:=sub<Sym(96)| (1,41,68,80)(2,42,69,81)(3,43,70,82)(4,44,71,83)(5,45,72,84)(6,46,49,85)(7,47,50,86)(8,48,51,87)(9,25,52,88)(10,26,53,89)(11,27,54,90)(12,28,55,91)(13,29,56,92)(14,30,57,93)(15,31,58,94)(16,32,59,95)(17,33,60,96)(18,34,61,73)(19,35,62,74)(20,36,63,75)(21,37,64,76)(22,38,65,77)(23,39,66,78)(24,40,67,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;
G:=Group( (1,41,68,80)(2,42,69,81)(3,43,70,82)(4,44,71,83)(5,45,72,84)(6,46,49,85)(7,47,50,86)(8,48,51,87)(9,25,52,88)(10,26,53,89)(11,27,54,90)(12,28,55,91)(13,29,56,92)(14,30,57,93)(15,31,58,94)(16,32,59,95)(17,33,60,96)(18,34,61,73)(19,35,62,74)(20,36,63,75)(21,37,64,76)(22,38,65,77)(23,39,66,78)(24,40,67,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );
G=PermutationGroup([[(1,41,68,80),(2,42,69,81),(3,43,70,82),(4,44,71,83),(5,45,72,84),(6,46,49,85),(7,47,50,86),(8,48,51,87),(9,25,52,88),(10,26,53,89),(11,27,54,90),(12,28,55,91),(13,29,56,92),(14,30,57,93),(15,31,58,94),(16,32,59,95),(17,33,60,96),(18,34,61,73),(19,35,62,74),(20,36,63,75),(21,37,64,76),(22,38,65,77),(23,39,66,78),(24,40,67,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])
C4×C24 is a maximal subgroup of
C42.279D6 C24⋊C8 C4.8Dic12 C24⋊2C8 C24⋊1C8 C4.17D24 C24.C8 C12⋊C16 C24.1C8 C24⋊12Q8 C24⋊9Q8 C12.14Q16 C24⋊8Q8 C24.13Q8 C42.282D6 C8⋊6D12 D6.C42 C42.243D6 C8⋊5D12 C4.5D24 C12⋊4D8 C8.8D12 C42.264D6 C12⋊4Q16 D24⋊11C4
96 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | ··· | 4L | 6A | ··· | 6F | 8A | ··· | 8P | 12A | ··· | 12X | 24A | ··· | 24AF |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
96 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C12 | C12 | C24 |
kernel | C4×C24 | C4×C12 | C2×C24 | C4×C8 | C24 | C2×C12 | C42 | C2×C8 | C12 | C8 | C2×C4 | C4 |
# reps | 1 | 1 | 2 | 2 | 8 | 4 | 2 | 4 | 16 | 16 | 8 | 32 |
Matrix representation of C4×C24 ►in GL2(𝔽73) generated by
46 | 0 |
0 | 72 |
51 | 0 |
0 | 21 |
G:=sub<GL(2,GF(73))| [46,0,0,72],[51,0,0,21] >;
C4×C24 in GAP, Magma, Sage, TeX
C_4\times C_{24}
% in TeX
G:=Group("C4xC24");
// GroupNames label
G:=SmallGroup(96,46);
// by ID
G=gap.SmallGroup(96,46);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-2,-2,72,151,117]);
// Polycyclic
G:=Group<a,b|a^4=b^24=1,a*b=b*a>;
// generators/relations
Export