Extensions 1→N→G→Q→1 with N=C3xC4.Q8 and Q=C2

Direct product G=NxQ with N=C3xC4.Q8 and Q=C2
dρLabelID
C6xC4.Q8192C6xC4.Q8192,858

Semidirect products G=N:Q with N=C3xC4.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4.Q8):1C2 = D24:8C4φ: C2/C1C2 ⊆ Out C3xC4.Q8484(C3xC4.Q8):1C2192,47
(C3xC4.Q8):2C2 = C8:(C4xS3)φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):2C2192,420
(C3xC4.Q8):3C2 = C24:7D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):3C2192,424
(C3xC4.Q8):4C2 = C8.2D12φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):4C2192,426
(C3xC4.Q8):5C2 = D24:9C4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):5C2192,428
(C3xC4.Q8):6C2 = Dic3:8SD16φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):6C2192,411
(C3xC4.Q8):7C2 = S3xC4.Q8φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):7C2192,418
(C3xC4.Q8):8C2 = (S3xC8):C4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):8C2192,419
(C3xC4.Q8):9C2 = C8:8D12φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):9C2192,423
(C3xC4.Q8):10C2 = C3xD8:2C4φ: C2/C1C2 ⊆ Out C3xC4.Q8484(C3xC4.Q8):10C2192,166
(C3xC4.Q8):11C2 = C3xM4(2):C4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):11C2192,861
(C3xC4.Q8):12C2 = C3xD8:C4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):12C2192,875
(C3xC4.Q8):13C2 = C3xC8:2D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):13C2192,902
(C3xC4.Q8):14C2 = C3xC8.D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):14C2192,903
(C3xC4.Q8):15C2 = D6.2SD16φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):15C2192,421
(C3xC4.Q8):16C2 = D6.4SD16φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):16C2192,422
(C3xC4.Q8):17C2 = C4.Q8:S3φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):17C2192,425
(C3xC4.Q8):18C2 = C6.(C4oD8)φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):18C2192,427
(C3xC4.Q8):19C2 = D12:Q8φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):19C2192,429
(C3xC4.Q8):20C2 = D12.Q8φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):20C2192,430
(C3xC4.Q8):21C2 = C3xC8:8D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):21C2192,898
(C3xC4.Q8):22C2 = C3xD4:2Q8φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):22C2192,909
(C3xC4.Q8):23C2 = C3xD4.Q8φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):23C2192,911
(C3xC4.Q8):24C2 = C3xC23.46D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):24C2192,914
(C3xC4.Q8):25C2 = C3xC23.19D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):25C2192,915
(C3xC4.Q8):26C2 = C3xC23.47D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):26C2192,916
(C3xC4.Q8):27C2 = C3xC23.20D4φ: C2/C1C2 ⊆ Out C3xC4.Q896(C3xC4.Q8):27C2192,918
(C3xC4.Q8):28C2 = C3xC23.25D4φ: trivial image96(C3xC4.Q8):28C2192,860
(C3xC4.Q8):29C2 = C12xSD16φ: trivial image96(C3xC4.Q8):29C2192,871

Non-split extensions G=N.Q with N=C3xC4.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4.Q8).1C2 = C8.Dic6φ: C2/C1C2 ⊆ Out C3xC4.Q8484(C3xC4.Q8).1C2192,46
(C3xC4.Q8).2C2 = Dic12:9C4φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).2C2192,412
(C3xC4.Q8).3C2 = C24:3Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).3C2192,415
(C3xC4.Q8).4C2 = C24:5Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).4C2192,414
(C3xC4.Q8).5C2 = C8.8Dic6φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).5C2192,417
(C3xC4.Q8).6C2 = C3xC8.Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8484(C3xC4.Q8).6C2192,171
(C3xC4.Q8).7C2 = C3xQ16:C4φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).7C2192,874
(C3xC4.Q8).8C2 = C3xC8:Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).8C2192,934
(C3xC4.Q8).9C2 = Dic6:Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).9C2192,413
(C3xC4.Q8).10C2 = Dic6.Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).10C2192,416
(C3xC4.Q8).11C2 = C3xQ8:Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).11C2192,908
(C3xC4.Q8).12C2 = C3xQ8.Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).12C2192,912
(C3xC4.Q8).13C2 = C3xC8:3Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).13C2192,931
(C3xC4.Q8).14C2 = C3xC8.5Q8φ: C2/C1C2 ⊆ Out C3xC4.Q8192(C3xC4.Q8).14C2192,932

׿
x
:
Z
F
o
wr
Q
<