Extensions 1→N→G→Q→1 with N=C3×C4.Q8 and Q=C2

Direct product G=N×Q with N=C3×C4.Q8 and Q=C2
dρLabelID
C6×C4.Q8192C6xC4.Q8192,858

Semidirect products G=N:Q with N=C3×C4.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4.Q8)⋊1C2 = D248C4φ: C2/C1C2 ⊆ Out C3×C4.Q8484(C3xC4.Q8):1C2192,47
(C3×C4.Q8)⋊2C2 = C8⋊(C4×S3)φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):2C2192,420
(C3×C4.Q8)⋊3C2 = C247D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):3C2192,424
(C3×C4.Q8)⋊4C2 = C8.2D12φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):4C2192,426
(C3×C4.Q8)⋊5C2 = D249C4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):5C2192,428
(C3×C4.Q8)⋊6C2 = Dic38SD16φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):6C2192,411
(C3×C4.Q8)⋊7C2 = S3×C4.Q8φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):7C2192,418
(C3×C4.Q8)⋊8C2 = (S3×C8)⋊C4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):8C2192,419
(C3×C4.Q8)⋊9C2 = C88D12φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):9C2192,423
(C3×C4.Q8)⋊10C2 = C3×D82C4φ: C2/C1C2 ⊆ Out C3×C4.Q8484(C3xC4.Q8):10C2192,166
(C3×C4.Q8)⋊11C2 = C3×M4(2)⋊C4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):11C2192,861
(C3×C4.Q8)⋊12C2 = C3×D8⋊C4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):12C2192,875
(C3×C4.Q8)⋊13C2 = C3×C82D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):13C2192,902
(C3×C4.Q8)⋊14C2 = C3×C8.D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):14C2192,903
(C3×C4.Q8)⋊15C2 = D6.2SD16φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):15C2192,421
(C3×C4.Q8)⋊16C2 = D6.4SD16φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):16C2192,422
(C3×C4.Q8)⋊17C2 = C4.Q8⋊S3φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):17C2192,425
(C3×C4.Q8)⋊18C2 = C6.(C4○D8)φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):18C2192,427
(C3×C4.Q8)⋊19C2 = D12⋊Q8φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):19C2192,429
(C3×C4.Q8)⋊20C2 = D12.Q8φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):20C2192,430
(C3×C4.Q8)⋊21C2 = C3×C88D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):21C2192,898
(C3×C4.Q8)⋊22C2 = C3×D42Q8φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):22C2192,909
(C3×C4.Q8)⋊23C2 = C3×D4.Q8φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):23C2192,911
(C3×C4.Q8)⋊24C2 = C3×C23.46D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):24C2192,914
(C3×C4.Q8)⋊25C2 = C3×C23.19D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):25C2192,915
(C3×C4.Q8)⋊26C2 = C3×C23.47D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):26C2192,916
(C3×C4.Q8)⋊27C2 = C3×C23.20D4φ: C2/C1C2 ⊆ Out C3×C4.Q896(C3xC4.Q8):27C2192,918
(C3×C4.Q8)⋊28C2 = C3×C23.25D4φ: trivial image96(C3xC4.Q8):28C2192,860
(C3×C4.Q8)⋊29C2 = C12×SD16φ: trivial image96(C3xC4.Q8):29C2192,871

Non-split extensions G=N.Q with N=C3×C4.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4.Q8).1C2 = C8.Dic6φ: C2/C1C2 ⊆ Out C3×C4.Q8484(C3xC4.Q8).1C2192,46
(C3×C4.Q8).2C2 = Dic129C4φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).2C2192,412
(C3×C4.Q8).3C2 = C243Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).3C2192,415
(C3×C4.Q8).4C2 = C245Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).4C2192,414
(C3×C4.Q8).5C2 = C8.8Dic6φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).5C2192,417
(C3×C4.Q8).6C2 = C3×C8.Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8484(C3xC4.Q8).6C2192,171
(C3×C4.Q8).7C2 = C3×Q16⋊C4φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).7C2192,874
(C3×C4.Q8).8C2 = C3×C8⋊Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).8C2192,934
(C3×C4.Q8).9C2 = Dic6⋊Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).9C2192,413
(C3×C4.Q8).10C2 = Dic6.Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).10C2192,416
(C3×C4.Q8).11C2 = C3×Q8⋊Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).11C2192,908
(C3×C4.Q8).12C2 = C3×Q8.Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).12C2192,912
(C3×C4.Q8).13C2 = C3×C83Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).13C2192,931
(C3×C4.Q8).14C2 = C3×C8.5Q8φ: C2/C1C2 ⊆ Out C3×C4.Q8192(C3xC4.Q8).14C2192,932

׿
×
𝔽