Copied to
clipboard

G = D24:9C4order 192 = 26·3

9th semidirect product of D24 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D24:9C4, C8:4(C4xS3), C24:8(C2xC4), C4.Q8:5S3, D12:6(C2xC4), C24:C4:3C2, (C2xC8).63D6, C6.51(C4xD4), C3:3(D8:C4), C4:C4.163D6, Dic3:5D4:6C2, (C2xD24).13C2, C6.D8:18C2, C2.6(Q8:3D6), C22.86(S3xD4), C12.34(C4oD4), C6.72(C8:C22), C12.45(C22xC4), C4.6(Q8:3S3), (C2xC24).112C22, (C2xC12).285C23, (C2xDic3).165D4, (C2xD12).77C22, C2.11(Dic3:5D4), (C4xDic3).31C22, C4.42(S3xC2xC4), (C3xC4.Q8):5C2, (C2xC6).290(C2xD4), (C2xC3:C8).62C22, (C3xC4:C4).78C22, (C2xC4).388(C22xS3), SmallGroup(192,428)

Series: Derived Chief Lower central Upper central

C1C12 — D24:9C4
C1C3C6C2xC6C2xC12C2xD12C2xD24 — D24:9C4
C3C6C12 — D24:9C4
C1C22C2xC4C4.Q8

Generators and relations for D24:9C4
 G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a19, cbc-1=a18b >

Subgroups: 448 in 132 conjugacy classes, 49 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, C12, D6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C2xC8, D8, C22xC4, C2xD4, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C2xC12, C2xC12, C22xS3, C8:C4, D4:C4, C4.Q8, C4xD4, C2xD8, D24, C2xC3:C8, C4xDic3, D6:C4, C3xC4:C4, C2xC24, S3xC2xC4, C2xD12, D8:C4, C6.D8, C24:C4, C3xC4.Q8, Dic3:5D4, C2xD24, D24:9C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C22xS3, C4xD4, C8:C22, S3xC2xC4, S3xD4, Q8:3S3, D8:C4, Dic3:5D4, Q8:3D6, D24:9C4

Smallest permutation representation of D24:9C4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 24)(17 23)(18 22)(19 21)(26 48)(27 47)(28 46)(29 45)(30 44)(31 43)(32 42)(33 41)(34 40)(35 39)(36 38)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)(55 61)(56 60)(57 59)(68 72)(69 71)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)(81 89)(82 88)(83 87)(84 86)
(1 39 63 87)(2 34 64 82)(3 29 65 77)(4 48 66 96)(5 43 67 91)(6 38 68 86)(7 33 69 81)(8 28 70 76)(9 47 71 95)(10 42 72 90)(11 37 49 85)(12 32 50 80)(13 27 51 75)(14 46 52 94)(15 41 53 89)(16 36 54 84)(17 31 55 79)(18 26 56 74)(19 45 57 93)(20 40 58 88)(21 35 59 83)(22 30 60 78)(23 25 61 73)(24 44 62 92)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(26,48)(27,47)(28,46)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(68,72)(69,71)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86), (1,39,63,87)(2,34,64,82)(3,29,65,77)(4,48,66,96)(5,43,67,91)(6,38,68,86)(7,33,69,81)(8,28,70,76)(9,47,71,95)(10,42,72,90)(11,37,49,85)(12,32,50,80)(13,27,51,75)(14,46,52,94)(15,41,53,89)(16,36,54,84)(17,31,55,79)(18,26,56,74)(19,45,57,93)(20,40,58,88)(21,35,59,83)(22,30,60,78)(23,25,61,73)(24,44,62,92)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(26,48)(27,47)(28,46)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(68,72)(69,71)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86), (1,39,63,87)(2,34,64,82)(3,29,65,77)(4,48,66,96)(5,43,67,91)(6,38,68,86)(7,33,69,81)(8,28,70,76)(9,47,71,95)(10,42,72,90)(11,37,49,85)(12,32,50,80)(13,27,51,75)(14,46,52,94)(15,41,53,89)(16,36,54,84)(17,31,55,79)(18,26,56,74)(19,45,57,93)(20,40,58,88)(21,35,59,83)(22,30,60,78)(23,25,61,73)(24,44,62,92) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,24),(17,23),(18,22),(19,21),(26,48),(27,47),(28,46),(29,45),(30,44),(31,43),(32,42),(33,41),(34,40),(35,39),(36,38),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62),(55,61),(56,60),(57,59),(68,72),(69,71),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90),(81,89),(82,88),(83,87),(84,86)], [(1,39,63,87),(2,34,64,82),(3,29,65,77),(4,48,66,96),(5,43,67,91),(6,38,68,86),(7,33,69,81),(8,28,70,76),(9,47,71,95),(10,42,72,90),(11,37,49,85),(12,32,50,80),(13,27,51,75),(14,46,52,94),(15,41,53,89),(16,36,54,84),(17,31,55,79),(18,26,56,74),(19,45,57,93),(20,40,58,88),(21,35,59,83),(22,30,60,78),(23,25,61,73),(24,44,62,92)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222234444444444666888812121212121224242424
size111112121212222444466662224412124488884444

36 irreducible representations

dim11111112222224444
type++++++++++++++
imageC1C2C2C2C2C2C4S3D4D6D6C4oD4C4xS3C8:C22Q8:3S3S3xD4Q8:3D6
kernelD24:9C4C6.D8C24:C4C3xC4.Q8Dic3:5D4C2xD24D24C4.Q8C2xDic3C4:C4C2xC8C12C8C6C4C22C2
# reps12112181221242114

Matrix representation of D24:9C4 in GL8(F73)

484854350000
271919540000
563854250000
365646250000
00000005
000000680
000029055
000029296810
,
10000000
172000000
955010000
955100000
0000015048
0000104848
00000010
000000172
,
007210000
272771720000
004600000
7204600000
00003060013
00001343600
00000173013
00005606043

G:=sub<GL(8,GF(73))| [48,27,56,36,0,0,0,0,48,19,38,56,0,0,0,0,54,19,54,46,0,0,0,0,35,54,25,25,0,0,0,0,0,0,0,0,0,0,29,29,0,0,0,0,0,0,0,29,0,0,0,0,0,68,5,68,0,0,0,0,5,0,5,10],[1,1,9,9,0,0,0,0,0,72,55,55,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,50,48,1,1,0,0,0,0,48,48,0,72],[0,27,0,72,0,0,0,0,0,27,0,0,0,0,0,0,72,71,46,46,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,30,13,0,56,0,0,0,0,60,43,17,0,0,0,0,0,0,60,30,60,0,0,0,0,13,0,13,43] >;

D24:9C4 in GAP, Magma, Sage, TeX

D_{24}\rtimes_9C_4
% in TeX

G:=Group("D24:9C4");
// GroupNames label

G:=SmallGroup(192,428);
// by ID

G=gap.SmallGroup(192,428);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,219,58,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^18*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<