Copied to
clipboard

G = Dic38SD16order 192 = 26·3

3rd semidirect product of Dic3 and SD16 acting through Inn(Dic3)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic38SD16, C88(C4×S3), C34(C4×SD16), C24⋊C25C4, C2413(C2×C4), C6.49(C4×D4), C4.Q813S3, C4⋊C4.158D6, Dic66(C2×C4), (C8×Dic3)⋊8C2, D12.8(C2×C4), (C2×C8).255D6, C2.5(S3×SD16), C6.51(C4○D8), C6.34(C2×SD16), C6.D8.4C2, C22.81(S3×D4), Dic6⋊C46C2, Dic35D4.4C2, C12.25(C4○D4), C6.SD1614C2, C12.40(C22×C4), C4.1(Q83S3), C2.9(Dic35D4), (C2×C12).268C23, (C2×C24).156C22, (C2×Dic3).205D4, C2.5(Q8.7D6), (C2×D12).72C22, (C2×Dic6).78C22, (C4×Dic3).228C22, C4.40(S3×C2×C4), (C3×C4.Q8)⋊6C2, (C2×C24⋊C2).9C2, (C2×C6).273(C2×D4), (C3×C4⋊C4).61C22, (C2×C3⋊C8).223C22, (C2×C4).371(C22×S3), SmallGroup(192,411)

Series: Derived Chief Lower central Upper central

C1C12 — Dic38SD16
C1C3C6C12C2×C12C4×Dic3Dic35D4 — Dic38SD16
C3C6C12 — Dic38SD16
C1C22C2×C4C4.Q8

Generators and relations for Dic38SD16
 G = < a,b,c,d | a6=c8=d2=1, b2=a3, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c3 >

Subgroups: 352 in 122 conjugacy classes, 51 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C24⋊C2, C2×C3⋊C8, C4×Dic3, C4×Dic3, Dic3⋊C4, D6⋊C4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, C4×SD16, C6.D8, C6.SD16, C8×Dic3, C3×C4.Q8, Dic6⋊C4, Dic35D4, C2×C24⋊C2, Dic38SD16
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, SD16, C22×C4, C2×D4, C4○D4, C4×S3, C22×S3, C4×D4, C2×SD16, C4○D8, S3×C2×C4, S3×D4, Q83S3, C4×SD16, Dic35D4, S3×SD16, Q8.7D6, Dic38SD16

Smallest permutation representation of Dic38SD16
On 96 points
Generators in S96
(1 73 55 86 34 16)(2 74 56 87 35 9)(3 75 49 88 36 10)(4 76 50 81 37 11)(5 77 51 82 38 12)(6 78 52 83 39 13)(7 79 53 84 40 14)(8 80 54 85 33 15)(17 92 59 47 27 70)(18 93 60 48 28 71)(19 94 61 41 29 72)(20 95 62 42 30 65)(21 96 63 43 31 66)(22 89 64 44 32 67)(23 90 57 45 25 68)(24 91 58 46 26 69)
(1 45 86 23)(2 46 87 24)(3 47 88 17)(4 48 81 18)(5 41 82 19)(6 42 83 20)(7 43 84 21)(8 44 85 22)(9 26 56 91)(10 27 49 92)(11 28 50 93)(12 29 51 94)(13 30 52 95)(14 31 53 96)(15 32 54 89)(16 25 55 90)(33 67 80 64)(34 68 73 57)(35 69 74 58)(36 70 75 59)(37 71 76 60)(38 72 77 61)(39 65 78 62)(40 66 79 63)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 82)(2 85)(3 88)(4 83)(5 86)(6 81)(7 84)(8 87)(9 33)(10 36)(11 39)(12 34)(13 37)(14 40)(15 35)(16 38)(17 47)(18 42)(19 45)(20 48)(21 43)(22 46)(23 41)(24 44)(25 72)(26 67)(27 70)(28 65)(29 68)(30 71)(31 66)(32 69)(49 75)(50 78)(51 73)(52 76)(53 79)(54 74)(55 77)(56 80)(57 94)(58 89)(59 92)(60 95)(61 90)(62 93)(63 96)(64 91)

G:=sub<Sym(96)| (1,73,55,86,34,16)(2,74,56,87,35,9)(3,75,49,88,36,10)(4,76,50,81,37,11)(5,77,51,82,38,12)(6,78,52,83,39,13)(7,79,53,84,40,14)(8,80,54,85,33,15)(17,92,59,47,27,70)(18,93,60,48,28,71)(19,94,61,41,29,72)(20,95,62,42,30,65)(21,96,63,43,31,66)(22,89,64,44,32,67)(23,90,57,45,25,68)(24,91,58,46,26,69), (1,45,86,23)(2,46,87,24)(3,47,88,17)(4,48,81,18)(5,41,82,19)(6,42,83,20)(7,43,84,21)(8,44,85,22)(9,26,56,91)(10,27,49,92)(11,28,50,93)(12,29,51,94)(13,30,52,95)(14,31,53,96)(15,32,54,89)(16,25,55,90)(33,67,80,64)(34,68,73,57)(35,69,74,58)(36,70,75,59)(37,71,76,60)(38,72,77,61)(39,65,78,62)(40,66,79,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,82)(2,85)(3,88)(4,83)(5,86)(6,81)(7,84)(8,87)(9,33)(10,36)(11,39)(12,34)(13,37)(14,40)(15,35)(16,38)(17,47)(18,42)(19,45)(20,48)(21,43)(22,46)(23,41)(24,44)(25,72)(26,67)(27,70)(28,65)(29,68)(30,71)(31,66)(32,69)(49,75)(50,78)(51,73)(52,76)(53,79)(54,74)(55,77)(56,80)(57,94)(58,89)(59,92)(60,95)(61,90)(62,93)(63,96)(64,91)>;

G:=Group( (1,73,55,86,34,16)(2,74,56,87,35,9)(3,75,49,88,36,10)(4,76,50,81,37,11)(5,77,51,82,38,12)(6,78,52,83,39,13)(7,79,53,84,40,14)(8,80,54,85,33,15)(17,92,59,47,27,70)(18,93,60,48,28,71)(19,94,61,41,29,72)(20,95,62,42,30,65)(21,96,63,43,31,66)(22,89,64,44,32,67)(23,90,57,45,25,68)(24,91,58,46,26,69), (1,45,86,23)(2,46,87,24)(3,47,88,17)(4,48,81,18)(5,41,82,19)(6,42,83,20)(7,43,84,21)(8,44,85,22)(9,26,56,91)(10,27,49,92)(11,28,50,93)(12,29,51,94)(13,30,52,95)(14,31,53,96)(15,32,54,89)(16,25,55,90)(33,67,80,64)(34,68,73,57)(35,69,74,58)(36,70,75,59)(37,71,76,60)(38,72,77,61)(39,65,78,62)(40,66,79,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,82)(2,85)(3,88)(4,83)(5,86)(6,81)(7,84)(8,87)(9,33)(10,36)(11,39)(12,34)(13,37)(14,40)(15,35)(16,38)(17,47)(18,42)(19,45)(20,48)(21,43)(22,46)(23,41)(24,44)(25,72)(26,67)(27,70)(28,65)(29,68)(30,71)(31,66)(32,69)(49,75)(50,78)(51,73)(52,76)(53,79)(54,74)(55,77)(56,80)(57,94)(58,89)(59,92)(60,95)(61,90)(62,93)(63,96)(64,91) );

G=PermutationGroup([[(1,73,55,86,34,16),(2,74,56,87,35,9),(3,75,49,88,36,10),(4,76,50,81,37,11),(5,77,51,82,38,12),(6,78,52,83,39,13),(7,79,53,84,40,14),(8,80,54,85,33,15),(17,92,59,47,27,70),(18,93,60,48,28,71),(19,94,61,41,29,72),(20,95,62,42,30,65),(21,96,63,43,31,66),(22,89,64,44,32,67),(23,90,57,45,25,68),(24,91,58,46,26,69)], [(1,45,86,23),(2,46,87,24),(3,47,88,17),(4,48,81,18),(5,41,82,19),(6,42,83,20),(7,43,84,21),(8,44,85,22),(9,26,56,91),(10,27,49,92),(11,28,50,93),(12,29,51,94),(13,30,52,95),(14,31,53,96),(15,32,54,89),(16,25,55,90),(33,67,80,64),(34,68,73,57),(35,69,74,58),(36,70,75,59),(37,71,76,60),(38,72,77,61),(39,65,78,62),(40,66,79,63)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,82),(2,85),(3,88),(4,83),(5,86),(6,81),(7,84),(8,87),(9,33),(10,36),(11,39),(12,34),(13,37),(14,40),(15,35),(16,38),(17,47),(18,42),(19,45),(20,48),(21,43),(22,46),(23,41),(24,44),(25,72),(26,67),(27,70),(28,65),(29,68),(30,71),(31,66),(32,69),(49,75),(50,78),(51,73),(52,76),(53,79),(54,74),(55,77),(56,80),(57,94),(58,89),(59,92),(60,95),(61,90),(62,93),(63,96),(64,91)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222223444444444444446668888888812121212121224242424
size1111121222233334444661212222222266664488884444

42 irreducible representations

dim111111111222222224444
type++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D4D6D6SD16C4○D4C4×S3C4○D8Q83S3S3×D4S3×SD16Q8.7D6
kernelDic38SD16C6.D8C6.SD16C8×Dic3C3×C4.Q8Dic6⋊C4Dic35D4C2×C24⋊C2C24⋊C2C4.Q8C2×Dic3C4⋊C4C2×C8Dic3C12C8C6C4C22C2C2
# reps111111118122142441122

Matrix representation of Dic38SD16 in GL6(𝔽73)

7200000
0720000
001000
000100
000001
00007272
,
4600000
0460000
0072000
0007200
000010
00007272
,
40350000
21330000
0061400
0055000
000010
000001
,
7200000
4410000
0072000
0070100
000010
00007272

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[40,21,0,0,0,0,35,33,0,0,0,0,0,0,61,55,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,44,0,0,0,0,0,1,0,0,0,0,0,0,72,70,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

Dic38SD16 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes_8{\rm SD}_{16}
% in TeX

G:=Group("Dic3:8SD16");
// GroupNames label

G:=SmallGroup(192,411);
// by ID

G=gap.SmallGroup(192,411);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,120,135,268,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^8=d^2=1,b^2=a^3,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽