Copied to
clipboard

G = He32Q8order 216 = 23·33

The semidirect product of He3 and Q8 acting via Q8/C2=C22

non-abelian, supersoluble, monomial

Aliases: He32Q8, C32⋊Dic6, C6.16S32, (C3×C6).1D6, C3⋊Dic3.S3, C32⋊C12.1C2, He33C4.2C2, C2.3(C32⋊D6), C3.2(C322Q8), (C2×He3).1C22, SmallGroup(216,33)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — He32Q8
C1C3C32He3C2×He3C32⋊C12 — He32Q8
He3C2×He3 — He32Q8
C1C2

Generators and relations for He32Q8
 G = < a,b,c,d,e | a3=b3=c3=d4=1, e2=d2, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, dbd-1=ebe-1=b-1, dcd-1=c-1, ce=ec, ede-1=d-1 >

3C3
3C3
6C3
9C4
9C4
9C4
3C6
3C6
6C6
2C32
27Q8
3Dic3
3Dic3
3Dic3
3Dic3
6Dic3
9Dic3
9C12
9C12
9C12
9Dic3
2C3×C6
9Dic6
9Dic6
9Dic6
3C3×Dic3
3C3×Dic3
3C3×Dic3
3C3×Dic3
6C3×Dic3
3C322Q8
3C322Q8

Character table of He32Q8

 class 123A3B3C3D4A4B4C6A6B6C6D12A12B12C12D12E12F
 size 112661218181826612181818181818
ρ11111111111111111111    trivial
ρ2111111-11-111111-1-11-1-1    linear of order 2
ρ3111111-1-111111-111-1-1-1    linear of order 2
ρ41111111-1-11111-1-1-1-111    linear of order 2
ρ5222-12-100-222-1-1011000    orthogonal lifted from D6
ρ6222-12-100222-1-10-1-1000    orthogonal lifted from S3
ρ72222-1-10-202-12-1100100    orthogonal lifted from D6
ρ82222-1-10202-12-1-100-100    orthogonal lifted from S3
ρ92-22222000-2-2-2-2000000    symplectic lifted from Q8, Schur index 2
ρ102-22-12-1000-2-21103-3000    symplectic lifted from Dic6, Schur index 2
ρ112-22-12-1000-2-2110-33000    symplectic lifted from Dic6, Schur index 2
ρ122-222-1-1000-21-21-300300    symplectic lifted from Dic6, Schur index 2
ρ132-222-1-1000-21-21300-300    symplectic lifted from Dic6, Schur index 2
ρ14444-2-210004-2-21000000    orthogonal lifted from S32
ρ154-44-2-21000-422-1000000    symplectic lifted from C322Q8, Schur index 2
ρ1666-3000-200-3000000011    orthogonal lifted from C32⋊D6
ρ1766-3000200-30000000-1-1    orthogonal lifted from C32⋊D6
ρ186-6-300000030000000-33    symplectic faithful, Schur index 2
ρ196-6-3000000300000003-3    symplectic faithful, Schur index 2

Smallest permutation representation of He32Q8
On 72 points
Generators in S72
(1 40 7)(2 37 8)(3 38 5)(4 39 6)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 51 31)(14 52 32)(15 49 29)(16 50 30)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 21 29)(2 30 22)(3 23 31)(4 32 24)(5 35 51)(6 52 36)(7 33 49)(8 50 34)(9 69 43)(10 44 70)(11 71 41)(12 42 72)(13 38 60)(14 57 39)(15 40 58)(16 59 37)(17 53 45)(18 46 54)(19 55 47)(20 48 56)(25 61 68)(26 65 62)(27 63 66)(28 67 64)
(1 7 15)(2 16 8)(3 5 13)(4 14 6)(9 27 46)(10 47 28)(11 25 48)(12 45 26)(17 65 42)(18 43 66)(19 67 44)(20 41 68)(21 33 40)(22 37 34)(23 35 38)(24 39 36)(29 49 58)(30 59 50)(31 51 60)(32 57 52)(53 62 72)(54 69 63)(55 64 70)(56 71 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)

G:=sub<Sym(72)| (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,51)(6,52,36)(7,33,49)(8,50,34)(9,69,43)(10,44,70)(11,71,41)(12,42,72)(13,38,60)(14,57,39)(15,40,58)(16,59,37)(17,53,45)(18,46,54)(19,55,47)(20,48,56)(25,61,68)(26,65,62)(27,63,66)(28,67,64), (1,7,15)(2,16,8)(3,5,13)(4,14,6)(9,27,46)(10,47,28)(11,25,48)(12,45,26)(17,65,42)(18,43,66)(19,67,44)(20,41,68)(21,33,40)(22,37,34)(23,35,38)(24,39,36)(29,49,58)(30,59,50)(31,51,60)(32,57,52)(53,62,72)(54,69,63)(55,64,70)(56,71,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63)>;

G:=Group( (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,51)(6,52,36)(7,33,49)(8,50,34)(9,69,43)(10,44,70)(11,71,41)(12,42,72)(13,38,60)(14,57,39)(15,40,58)(16,59,37)(17,53,45)(18,46,54)(19,55,47)(20,48,56)(25,61,68)(26,65,62)(27,63,66)(28,67,64), (1,7,15)(2,16,8)(3,5,13)(4,14,6)(9,27,46)(10,47,28)(11,25,48)(12,45,26)(17,65,42)(18,43,66)(19,67,44)(20,41,68)(21,33,40)(22,37,34)(23,35,38)(24,39,36)(29,49,58)(30,59,50)(31,51,60)(32,57,52)(53,62,72)(54,69,63)(55,64,70)(56,71,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63) );

G=PermutationGroup([[(1,40,7),(2,37,8),(3,38,5),(4,39,6),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,51,31),(14,52,32),(15,49,29),(16,50,30),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,21,29),(2,30,22),(3,23,31),(4,32,24),(5,35,51),(6,52,36),(7,33,49),(8,50,34),(9,69,43),(10,44,70),(11,71,41),(12,42,72),(13,38,60),(14,57,39),(15,40,58),(16,59,37),(17,53,45),(18,46,54),(19,55,47),(20,48,56),(25,61,68),(26,65,62),(27,63,66),(28,67,64)], [(1,7,15),(2,16,8),(3,5,13),(4,14,6),(9,27,46),(10,47,28),(11,25,48),(12,45,26),(17,65,42),(18,43,66),(19,67,44),(20,41,68),(21,33,40),(22,37,34),(23,35,38),(24,39,36),(29,49,58),(30,59,50),(31,51,60),(32,57,52),(53,62,72),(54,69,63),(55,64,70),(56,71,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)]])

He32Q8 is a maximal subgroup of   He32SD16  He3⋊Q16  C3⋊S3⋊Dic6  C12.91S32  C12.85S32  C62.8D6  C62.9D6
He32Q8 is a maximal quotient of   C62.D6  C62.3D6

Matrix representation of He32Q8 in GL6(𝔽13)

001000
000100
000010
000001
100000
010000
,
010000
12120000
000100
00121200
000001
00001212
,
000001
00001212
100000
010000
00121200
001000
,
200202
11112020
022002
20111120
020220
20201111
,
12671126
717671
71126126
767171
12612671
717176

G:=sub<GL(6,GF(13))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,12,0,0,0,0,1,12,0,0,0,0],[2,11,0,2,0,2,0,11,2,0,2,0,0,2,2,11,0,2,2,0,0,11,2,0,0,2,0,2,2,11,2,0,2,0,0,11],[12,7,7,7,12,7,6,1,1,6,6,1,7,7,12,7,12,7,1,6,6,1,6,1,12,7,12,7,7,7,6,1,6,1,1,6] >;

He32Q8 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_2Q_8
% in TeX

G:=Group("He3:2Q8");
// GroupNames label

G:=SmallGroup(216,33);
// by ID

G=gap.SmallGroup(216,33);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,73,31,201,1444,382,5189,2603]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of He32Q8 in TeX
Character table of He32Q8 in TeX

׿
×
𝔽