non-abelian, supersoluble, monomial
Aliases: He3⋊2Q8, C32⋊Dic6, C6.16S32, (C3×C6).1D6, C3⋊Dic3.S3, C32⋊C12.1C2, He3⋊3C4.2C2, C2.3(C32⋊D6), C3.2(C32⋊2Q8), (C2×He3).1C22, SmallGroup(216,33)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊2Q8
G = < a,b,c,d,e | a3=b3=c3=d4=1, e2=d2, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, dbd-1=ebe-1=b-1, dcd-1=c-1, ce=ec, ede-1=d-1 >
Character table of He3⋊2Q8
class | 1 | 2 | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 2 | 6 | 6 | 12 | 18 | 18 | 18 | 2 | 6 | 6 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | -2 | 2 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | -2 | 0 | 2 | -1 | 2 | -1 | 1 | 0 | 0 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 2 | 0 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ10 | 2 | -2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | √3 | -√3 | 0 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ11 | 2 | -2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | -√3 | √3 | 0 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ12 | 2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | -√3 | 0 | 0 | √3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ13 | 2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | √3 | 0 | 0 | -√3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ14 | 4 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ15 | 4 | -4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2Q8, Schur index 2 |
ρ16 | 6 | 6 | -3 | 0 | 0 | 0 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from C32⋊D6 |
ρ17 | 6 | 6 | -3 | 0 | 0 | 0 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from C32⋊D6 |
ρ18 | 6 | -6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | symplectic faithful, Schur index 2 |
ρ19 | 6 | -6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | symplectic faithful, Schur index 2 |
(1 40 7)(2 37 8)(3 38 5)(4 39 6)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 51 31)(14 52 32)(15 49 29)(16 50 30)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 21 29)(2 30 22)(3 23 31)(4 32 24)(5 35 51)(6 52 36)(7 33 49)(8 50 34)(9 69 43)(10 44 70)(11 71 41)(12 42 72)(13 38 60)(14 57 39)(15 40 58)(16 59 37)(17 53 45)(18 46 54)(19 55 47)(20 48 56)(25 61 68)(26 65 62)(27 63 66)(28 67 64)
(1 7 15)(2 16 8)(3 5 13)(4 14 6)(9 27 46)(10 47 28)(11 25 48)(12 45 26)(17 65 42)(18 43 66)(19 67 44)(20 41 68)(21 33 40)(22 37 34)(23 35 38)(24 39 36)(29 49 58)(30 59 50)(31 51 60)(32 57 52)(53 62 72)(54 69 63)(55 64 70)(56 71 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)
G:=sub<Sym(72)| (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,51)(6,52,36)(7,33,49)(8,50,34)(9,69,43)(10,44,70)(11,71,41)(12,42,72)(13,38,60)(14,57,39)(15,40,58)(16,59,37)(17,53,45)(18,46,54)(19,55,47)(20,48,56)(25,61,68)(26,65,62)(27,63,66)(28,67,64), (1,7,15)(2,16,8)(3,5,13)(4,14,6)(9,27,46)(10,47,28)(11,25,48)(12,45,26)(17,65,42)(18,43,66)(19,67,44)(20,41,68)(21,33,40)(22,37,34)(23,35,38)(24,39,36)(29,49,58)(30,59,50)(31,51,60)(32,57,52)(53,62,72)(54,69,63)(55,64,70)(56,71,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63)>;
G:=Group( (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,30,22)(3,23,31)(4,32,24)(5,35,51)(6,52,36)(7,33,49)(8,50,34)(9,69,43)(10,44,70)(11,71,41)(12,42,72)(13,38,60)(14,57,39)(15,40,58)(16,59,37)(17,53,45)(18,46,54)(19,55,47)(20,48,56)(25,61,68)(26,65,62)(27,63,66)(28,67,64), (1,7,15)(2,16,8)(3,5,13)(4,14,6)(9,27,46)(10,47,28)(11,25,48)(12,45,26)(17,65,42)(18,43,66)(19,67,44)(20,41,68)(21,33,40)(22,37,34)(23,35,38)(24,39,36)(29,49,58)(30,59,50)(31,51,60)(32,57,52)(53,62,72)(54,69,63)(55,64,70)(56,71,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63) );
G=PermutationGroup([[(1,40,7),(2,37,8),(3,38,5),(4,39,6),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,51,31),(14,52,32),(15,49,29),(16,50,30),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,21,29),(2,30,22),(3,23,31),(4,32,24),(5,35,51),(6,52,36),(7,33,49),(8,50,34),(9,69,43),(10,44,70),(11,71,41),(12,42,72),(13,38,60),(14,57,39),(15,40,58),(16,59,37),(17,53,45),(18,46,54),(19,55,47),(20,48,56),(25,61,68),(26,65,62),(27,63,66),(28,67,64)], [(1,7,15),(2,16,8),(3,5,13),(4,14,6),(9,27,46),(10,47,28),(11,25,48),(12,45,26),(17,65,42),(18,43,66),(19,67,44),(20,41,68),(21,33,40),(22,37,34),(23,35,38),(24,39,36),(29,49,58),(30,59,50),(31,51,60),(32,57,52),(53,62,72),(54,69,63),(55,64,70),(56,71,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)]])
He3⋊2Q8 is a maximal subgroup of
He3⋊2SD16 He3⋊Q16 C3⋊S3⋊Dic6 C12.91S32 C12.85S32 C62.8D6 C62.9D6
He3⋊2Q8 is a maximal quotient of C62.D6 C62.3D6
Matrix representation of He3⋊2Q8 ►in GL6(𝔽13)
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
2 | 0 | 0 | 2 | 0 | 2 |
11 | 11 | 2 | 0 | 2 | 0 |
0 | 2 | 2 | 0 | 0 | 2 |
2 | 0 | 11 | 11 | 2 | 0 |
0 | 2 | 0 | 2 | 2 | 0 |
2 | 0 | 2 | 0 | 11 | 11 |
12 | 6 | 7 | 1 | 12 | 6 |
7 | 1 | 7 | 6 | 7 | 1 |
7 | 1 | 12 | 6 | 12 | 6 |
7 | 6 | 7 | 1 | 7 | 1 |
12 | 6 | 12 | 6 | 7 | 1 |
7 | 1 | 7 | 1 | 7 | 6 |
G:=sub<GL(6,GF(13))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,12,0,0,0,0,1,12,0,0,0,0],[2,11,0,2,0,2,0,11,2,0,2,0,0,2,2,11,0,2,2,0,0,11,2,0,0,2,0,2,2,11,2,0,2,0,0,11],[12,7,7,7,12,7,6,1,1,6,6,1,7,7,12,7,12,7,1,6,6,1,6,1,12,7,12,7,7,7,6,1,6,1,1,6] >;
He3⋊2Q8 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_2Q_8
% in TeX
G:=Group("He3:2Q8");
// GroupNames label
G:=SmallGroup(216,33);
// by ID
G=gap.SmallGroup(216,33);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,73,31,201,1444,382,5189,2603]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export
Subgroup lattice of He3⋊2Q8 in TeX
Character table of He3⋊2Q8 in TeX