Copied to
clipboard

G = Q8.D14order 224 = 25·7

5th non-split extension by Q8 of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D565C2, Q163D7, D14.3D4, C8.10D14, Q8.5D14, C56.8C22, C28.10C23, Dic7.14D4, D28.5C22, (C8×D7)⋊3C2, C74(C4○D8), Q8⋊D74C2, (C7×Q16)⋊3C2, C2.24(D4×D7), C7⋊C8.8C22, Q82D73C2, C14.36(C2×D4), C4.10(C22×D7), (C7×Q8).5C22, (C4×D7).12C22, SmallGroup(224,114)

Series: Derived Chief Lower central Upper central

C1C28 — Q8.D14
C1C7C14C28C4×D7Q82D7 — Q8.D14
C7C14C28 — Q8.D14
C1C2C4Q16

Generators and relations for Q8.D14
 G = < a,b,c,d | a4=d2=1, b2=c14=a2, bab-1=cac-1=dad=a-1, cbc-1=a-1b, dbd=ab, dcd=a2c13 >

Subgroups: 302 in 62 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2×C4, D4, Q8, D7, C14, C2×C8, D8, SD16, Q16, C4○D4, Dic7, C28, C28, D14, D14, C4○D8, C7⋊C8, C56, C4×D7, C4×D7, D28, D28, C7×Q8, C8×D7, D56, Q8⋊D7, C7×Q16, Q82D7, Q8.D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C4○D8, C22×D7, D4×D7, Q8.D14

Smallest permutation representation of Q8.D14
On 112 points
Generators in S112
(1 59 15 73)(2 74 16 60)(3 61 17 75)(4 76 18 62)(5 63 19 77)(6 78 20 64)(7 65 21 79)(8 80 22 66)(9 67 23 81)(10 82 24 68)(11 69 25 83)(12 84 26 70)(13 71 27 57)(14 58 28 72)(29 103 43 89)(30 90 44 104)(31 105 45 91)(32 92 46 106)(33 107 47 93)(34 94 48 108)(35 109 49 95)(36 96 50 110)(37 111 51 97)(38 98 52 112)(39 85 53 99)(40 100 54 86)(41 87 55 101)(42 102 56 88)
(1 53 15 39)(2 100 16 86)(3 55 17 41)(4 102 18 88)(5 29 19 43)(6 104 20 90)(7 31 21 45)(8 106 22 92)(9 33 23 47)(10 108 24 94)(11 35 25 49)(12 110 26 96)(13 37 27 51)(14 112 28 98)(30 78 44 64)(32 80 46 66)(34 82 48 68)(36 84 50 70)(38 58 52 72)(40 60 54 74)(42 62 56 76)(57 111 71 97)(59 85 73 99)(61 87 75 101)(63 89 77 103)(65 91 79 105)(67 93 81 107)(69 95 83 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 56)(26 55)(27 54)(28 53)(57 100)(58 99)(59 98)(60 97)(61 96)(62 95)(63 94)(64 93)(65 92)(66 91)(67 90)(68 89)(69 88)(70 87)(71 86)(72 85)(73 112)(74 111)(75 110)(76 109)(77 108)(78 107)(79 106)(80 105)(81 104)(82 103)(83 102)(84 101)

G:=sub<Sym(112)| (1,59,15,73)(2,74,16,60)(3,61,17,75)(4,76,18,62)(5,63,19,77)(6,78,20,64)(7,65,21,79)(8,80,22,66)(9,67,23,81)(10,82,24,68)(11,69,25,83)(12,84,26,70)(13,71,27,57)(14,58,28,72)(29,103,43,89)(30,90,44,104)(31,105,45,91)(32,92,46,106)(33,107,47,93)(34,94,48,108)(35,109,49,95)(36,96,50,110)(37,111,51,97)(38,98,52,112)(39,85,53,99)(40,100,54,86)(41,87,55,101)(42,102,56,88), (1,53,15,39)(2,100,16,86)(3,55,17,41)(4,102,18,88)(5,29,19,43)(6,104,20,90)(7,31,21,45)(8,106,22,92)(9,33,23,47)(10,108,24,94)(11,35,25,49)(12,110,26,96)(13,37,27,51)(14,112,28,98)(30,78,44,64)(32,80,46,66)(34,82,48,68)(36,84,50,70)(38,58,52,72)(40,60,54,74)(42,62,56,76)(57,111,71,97)(59,85,73,99)(61,87,75,101)(63,89,77,103)(65,91,79,105)(67,93,81,107)(69,95,83,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,56)(26,55)(27,54)(28,53)(57,100)(58,99)(59,98)(60,97)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101)>;

G:=Group( (1,59,15,73)(2,74,16,60)(3,61,17,75)(4,76,18,62)(5,63,19,77)(6,78,20,64)(7,65,21,79)(8,80,22,66)(9,67,23,81)(10,82,24,68)(11,69,25,83)(12,84,26,70)(13,71,27,57)(14,58,28,72)(29,103,43,89)(30,90,44,104)(31,105,45,91)(32,92,46,106)(33,107,47,93)(34,94,48,108)(35,109,49,95)(36,96,50,110)(37,111,51,97)(38,98,52,112)(39,85,53,99)(40,100,54,86)(41,87,55,101)(42,102,56,88), (1,53,15,39)(2,100,16,86)(3,55,17,41)(4,102,18,88)(5,29,19,43)(6,104,20,90)(7,31,21,45)(8,106,22,92)(9,33,23,47)(10,108,24,94)(11,35,25,49)(12,110,26,96)(13,37,27,51)(14,112,28,98)(30,78,44,64)(32,80,46,66)(34,82,48,68)(36,84,50,70)(38,58,52,72)(40,60,54,74)(42,62,56,76)(57,111,71,97)(59,85,73,99)(61,87,75,101)(63,89,77,103)(65,91,79,105)(67,93,81,107)(69,95,83,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,56)(26,55)(27,54)(28,53)(57,100)(58,99)(59,98)(60,97)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101) );

G=PermutationGroup([[(1,59,15,73),(2,74,16,60),(3,61,17,75),(4,76,18,62),(5,63,19,77),(6,78,20,64),(7,65,21,79),(8,80,22,66),(9,67,23,81),(10,82,24,68),(11,69,25,83),(12,84,26,70),(13,71,27,57),(14,58,28,72),(29,103,43,89),(30,90,44,104),(31,105,45,91),(32,92,46,106),(33,107,47,93),(34,94,48,108),(35,109,49,95),(36,96,50,110),(37,111,51,97),(38,98,52,112),(39,85,53,99),(40,100,54,86),(41,87,55,101),(42,102,56,88)], [(1,53,15,39),(2,100,16,86),(3,55,17,41),(4,102,18,88),(5,29,19,43),(6,104,20,90),(7,31,21,45),(8,106,22,92),(9,33,23,47),(10,108,24,94),(11,35,25,49),(12,110,26,96),(13,37,27,51),(14,112,28,98),(30,78,44,64),(32,80,46,66),(34,82,48,68),(36,84,50,70),(38,58,52,72),(40,60,54,74),(42,62,56,76),(57,111,71,97),(59,85,73,99),(61,87,75,101),(63,89,77,103),(65,91,79,105),(67,93,81,107),(69,95,83,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,56),(26,55),(27,54),(28,53),(57,100),(58,99),(59,98),(60,97),(61,96),(62,95),(63,94),(64,93),(65,92),(66,91),(67,90),(68,89),(69,88),(70,87),(71,86),(72,85),(73,112),(74,111),(75,110),(76,109),(77,108),(78,107),(79,106),(80,105),(81,104),(82,103),(83,102),(84,101)]])

Q8.D14 is a maximal subgroup of
D112⋊C2  SD323D7  Q32⋊D7  Q323D7  D28.30D4  D7×C4○D8  D815D14  D56⋊C22  C56.C23
Q8.D14 is a maximal quotient of
Dic77SD16  Q8.Dic14  Q8⋊Dic7⋊C2  Q82D7⋊C4  D142SD16  D284D4  D14⋊C8.C2  D28.12D4  Dic75D8  C56.4Q8  C8.27(C4×D7)  C87D28  C2.D8⋊D7  D28.2Q8  Q16×Dic7  (C2×Q16)⋊D7  D28.17D4  D143Q16  C56.28D4

35 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A7B7C8A8B8C8D14A14B14C28A28B28C28D···28I56A···56F
order1222244444777888814141428282828···2856···56
size11142828244772222214142224448···84···4

35 irreducible representations

dim11111122222244
type+++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14C4○D8D4×D7Q8.D14
kernelQ8.D14C8×D7D56Q8⋊D7C7×Q16Q82D7Dic7D14Q16C8Q8C7C2C1
# reps11121211336436

Matrix representation of Q8.D14 in GL4(𝔽113) generated by

1000
0100
001112
002112
,
112000
011200
001598
00098
,
10210300
209000
0026100
002687
,
898900
1042400
00031
00620
G:=sub<GL(4,GF(113))| [1,0,0,0,0,1,0,0,0,0,1,2,0,0,112,112],[112,0,0,0,0,112,0,0,0,0,15,0,0,0,98,98],[102,20,0,0,103,90,0,0,0,0,26,26,0,0,100,87],[89,104,0,0,89,24,0,0,0,0,0,62,0,0,31,0] >;

Q8.D14 in GAP, Magma, Sage, TeX

Q_8.D_{14}
% in TeX

G:=Group("Q8.D14");
// GroupNames label

G:=SmallGroup(224,114);
// by ID

G=gap.SmallGroup(224,114);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,103,362,116,86,297,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=d^2=1,b^2=c^14=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=a^2*c^13>;
// generators/relations

׿
×
𝔽