direct product, non-abelian, soluble, monomial
Aliases: C2×AΓL1(𝔽9), F9⋊C22, PSU3(𝔽2)⋊C22, C3⋊S3⋊SD16, (C3×C6)⋊SD16, (C2×F9)⋊3C2, C32⋊(C2×SD16), S3≀C2.C22, C32⋊C4.3D4, C32⋊C4.C23, (C2×PSU3(𝔽2))⋊2C2, C3⋊S3.(C2×D4), (C2×C3⋊S3).4D4, (C2×S3≀C2).2C2, (C2×C32⋊C4).8C22, SmallGroup(288,1027)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C32⋊C4 — C2×AΓL1(𝔽9) |
C1 — C32 — C3⋊S3 — C32⋊C4 — F9 — AΓL1(𝔽9) — C2×AΓL1(𝔽9) |
C32 — C3⋊S3 — C32⋊C4 — C2×AΓL1(𝔽9) |
Subgroups: 604 in 84 conjugacy classes, 24 normal (14 characteristic)
C1, C2, C2 [×4], C3, C4 [×4], C22 [×5], S3 [×4], C6 [×3], C8 [×2], C2×C4 [×2], D4 [×3], Q8 [×3], C23, C32, D6 [×6], C2×C6, C2×C8, SD16 [×4], C2×D4, C2×Q8, C3×S3 [×2], C3⋊S3 [×2], C3×C6, C22×S3, C2×SD16, C32⋊C4 [×2], C32⋊C4 [×2], S32 [×3], S3×C6, C2×C3⋊S3, F9 [×2], S3≀C2 [×2], S3≀C2, PSU3(𝔽2) [×2], PSU3(𝔽2), C2×C32⋊C4, C2×C32⋊C4, C2×S32, AΓL1(𝔽9) [×4], C2×F9, C2×S3≀C2, C2×PSU3(𝔽2), C2×AΓL1(𝔽9)
Quotients:
C1, C2 [×7], C22 [×7], D4 [×2], C23, SD16 [×2], C2×D4, C2×SD16, AΓL1(𝔽9), C2×AΓL1(𝔽9)
Generators and relations
G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, ebe=b-1c, dcd-1=b, ce=ec, ede=d3 >
(1 2)(3 15)(4 16)(5 17)(6 18)(7 11)(8 12)(9 13)(10 14)
(1 5 9)(2 17 13)(3 6 4)(7 8 10)(11 12 14)(15 18 16)
(1 6 10)(2 18 14)(3 8 9)(4 7 5)(11 17 16)(12 13 15)
(3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18)
(3 5)(4 8)(7 9)(11 13)(12 16)(15 17)
G:=sub<Sym(18)| (1,2)(3,15)(4,16)(5,17)(6,18)(7,11)(8,12)(9,13)(10,14), (1,5,9)(2,17,13)(3,6,4)(7,8,10)(11,12,14)(15,18,16), (1,6,10)(2,18,14)(3,8,9)(4,7,5)(11,17,16)(12,13,15), (3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (3,5)(4,8)(7,9)(11,13)(12,16)(15,17)>;
G:=Group( (1,2)(3,15)(4,16)(5,17)(6,18)(7,11)(8,12)(9,13)(10,14), (1,5,9)(2,17,13)(3,6,4)(7,8,10)(11,12,14)(15,18,16), (1,6,10)(2,18,14)(3,8,9)(4,7,5)(11,17,16)(12,13,15), (3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (3,5)(4,8)(7,9)(11,13)(12,16)(15,17) );
G=PermutationGroup([(1,2),(3,15),(4,16),(5,17),(6,18),(7,11),(8,12),(9,13),(10,14)], [(1,5,9),(2,17,13),(3,6,4),(7,8,10),(11,12,14),(15,18,16)], [(1,6,10),(2,18,14),(3,8,9),(4,7,5),(11,17,16),(12,13,15)], [(3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18)], [(3,5),(4,8),(7,9),(11,13),(12,16),(15,17)])
G:=TransitiveGroup(18,110);
(1 6)(2 7)(3 8)(4 5)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 18 22)(3 20 24)(4 21 17)(5 14 10)(6 11 15)(8 13 9)
(1 22 18)(2 19 23)(4 21 17)(5 14 10)(6 15 11)(7 12 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(5 7)(9 13)(10 16)(12 14)(17 23)(19 21)(20 24)
G:=sub<Sym(24)| (1,6)(2,7)(3,8)(4,5)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,18,22)(3,20,24)(4,21,17)(5,14,10)(6,11,15)(8,13,9), (1,22,18)(2,19,23)(4,21,17)(5,14,10)(6,15,11)(7,12,16), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(5,7)(9,13)(10,16)(12,14)(17,23)(19,21)(20,24)>;
G:=Group( (1,6)(2,7)(3,8)(4,5)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,18,22)(3,20,24)(4,21,17)(5,14,10)(6,11,15)(8,13,9), (1,22,18)(2,19,23)(4,21,17)(5,14,10)(6,15,11)(7,12,16), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(5,7)(9,13)(10,16)(12,14)(17,23)(19,21)(20,24) );
G=PermutationGroup([(1,6),(2,7),(3,8),(4,5),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,18,22),(3,20,24),(4,21,17),(5,14,10),(6,11,15),(8,13,9)], [(1,22,18),(2,19,23),(4,21,17),(5,14,10),(6,15,11),(7,12,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(5,7),(9,13),(10,16),(12,14),(17,23),(19,21),(20,24)])
G:=TransitiveGroup(24,681);
(1 5)(2 6)(3 7)(4 8)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 12 21)(2 13 22)(3 23 14)(5 17 16)(6 18 9)(7 10 19)
(2 13 22)(3 14 23)(4 24 15)(6 18 9)(7 19 10)(8 11 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 5)(2 8)(4 6)(9 15)(11 13)(12 16)(17 21)(18 24)(20 22)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,12,21)(2,13,22)(3,23,14)(5,17,16)(6,18,9)(7,10,19), (2,13,22)(3,14,23)(4,24,15)(6,18,9)(7,19,10)(8,11,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,5)(2,8)(4,6)(9,15)(11,13)(12,16)(17,21)(18,24)(20,22)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,12,21)(2,13,22)(3,23,14)(5,17,16)(6,18,9)(7,10,19), (2,13,22)(3,14,23)(4,24,15)(6,18,9)(7,19,10)(8,11,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,5)(2,8)(4,6)(9,15)(11,13)(12,16)(17,21)(18,24)(20,22) );
G=PermutationGroup([(1,5),(2,6),(3,7),(4,8),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,12,21),(2,13,22),(3,23,14),(5,17,16),(6,18,9),(7,10,19)], [(2,13,22),(3,14,23),(4,24,15),(6,18,9),(7,19,10),(8,11,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,5),(2,8),(4,6),(9,15),(11,13),(12,16),(17,21),(18,24),(20,22)])
G:=TransitiveGroup(24,682);
Matrix representation ►G ⊆ GL8(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,-1,0,0,0,1,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,-1,1,0,0,0,0,0,1,-1,0,0,0,0,0,0],[0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,1,0,0,1,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,1,-1,0,0,0],[-1,0,0,0,0,0,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,0,1,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,0,-1,0,1,0],[-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0] >;
Character table of C2×AΓL1(𝔽9)
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 9 | 9 | 12 | 12 | 8 | 18 | 18 | 36 | 36 | 8 | 24 | 24 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | √-2 | √-2 | √-2 | √-2 | complex lifted from SD16 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | √-2 | √-2 | √-2 | √-2 | complex lifted from SD16 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | √-2 | √-2 | √-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | √-2 | √-2 | √-2 | √-2 | complex lifted from SD16 |
ρ15 | 8 | -8 | 0 | 0 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ16 | 8 | 8 | 0 | 0 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ17 | 8 | 8 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ18 | 8 | -8 | 0 | 0 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal faithful |
In GAP, Magma, Sage, TeX
C_2\times AGammaL_1({\mathbb F}_9)
% in TeX
G:=Group("C2xAGammaL(1,9)");
// GroupNames label
G:=SmallGroup(288,1027);
// by ID
G=gap.SmallGroup(288,1027);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,365,346,80,4037,4716,1202,201,10982,4717,1595,622]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,e*b*e=b^-1*c,d*c*d^-1=b,c*e=e*c,e*d*e=d^3>;
// generators/relations