extension | φ:Q→Out N | d | ρ | Label | ID |
C3⋊Dic3⋊1D4 = C62.55C23 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3:1D4 | 288,533 |
C3⋊Dic3⋊2D4 = C62.113C23 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3:2D4 | 288,619 |
C3⋊Dic3⋊3D4 = C62.121C23 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3:3D4 | 288,627 |
C3⋊Dic3⋊4D4 = C4×S3≀C2 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4 | C3:Dic3:4D4 | 288,877 |
C3⋊Dic3⋊5D4 = S32⋊D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4 | C3:Dic3:5D4 | 288,878 |
C3⋊Dic3⋊6D4 = C4⋊S3≀C2 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 8+ | C3:Dic3:6D4 | 288,879 |
C3⋊Dic3⋊7D4 = D12⋊Dic3 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3:7D4 | 288,546 |
C3⋊Dic3⋊8D4 = C62.72C23 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3:8D4 | 288,550 |
C3⋊Dic3⋊9D4 = C62.84C23 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3:9D4 | 288,562 |
C3⋊Dic3⋊10D4 = C62.258C23 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3:10D4 | 288,797 |
C3⋊Dic3⋊11D4 = C62.51C23 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3:11D4 | 288,529 |
C3⋊Dic3⋊12D4 = C62.82C23 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3:12D4 | 288,560 |
C3⋊Dic3⋊13D4 = C62.115C23 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3:13D4 | 288,621 |
C3⋊Dic3⋊14D4 = C62⋊7D4 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3:14D4 | 288,628 |
C3⋊Dic3⋊15D4 = C62.228C23 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3:15D4 | 288,741 |
C3⋊Dic3⋊16D4 = C62⋊14D4 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3:16D4 | 288,796 |
C3⋊Dic3⋊17D4 = C62.225C23 | φ: trivial image | 144 | | C3:Dic3:17D4 | 288,738 |
C3⋊Dic3⋊18D4 = C62.237C23 | φ: trivial image | 144 | | C3:Dic3:18D4 | 288,750 |
extension | φ:Q→Out N | d | ρ | Label | ID |
C3⋊Dic3.1D4 = S32⋊C8 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4 | C3:Dic3.1D4 | 288,374 |
C3⋊Dic3.2D4 = C4.S3≀C2 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4 | C3:Dic3.2D4 | 288,375 |
C3⋊Dic3.3D4 = (C3×C12).D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.3D4 | 288,376 |
C3⋊Dic3.4D4 = C62.3D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.4D4 | 288,387 |
C3⋊Dic3.5D4 = C62.4D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.5D4 | 288,388 |
C3⋊Dic3.6D4 = Dic3≀C2 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4- | C3:Dic3.6D4 | 288,389 |
C3⋊Dic3.7D4 = C4.4PSU3(𝔽2) | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8 | C3:Dic3.7D4 | 288,392 |
C3⋊Dic3.8D4 = C62.2Q8 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.8D4 | 288,396 |
C3⋊Dic3.9D4 = C3⋊Dic3.D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 4- | C3:Dic3.9D4 | 288,428 |
C3⋊Dic3.10D4 = C3⋊S3.5D8 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 8+ | C3:Dic3.10D4 | 288,430 |
C3⋊Dic3.11D4 = C3⋊S3.5Q16 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.11D4 | 288,432 |
C3⋊Dic3.12D4 = (C2×C62).C4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4 | C3:Dic3.12D4 | 288,436 |
C3⋊Dic3.13D4 = C24⋊6D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.13D4 | 288,446 |
C3⋊Dic3.14D4 = D12.4D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.14D4 | 288,459 |
C3⋊Dic3.15D4 = C62.10C23 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.15D4 | 288,488 |
C3⋊Dic3.16D4 = D6⋊3Dic6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.16D4 | 288,544 |
C3⋊Dic3.17D4 = D6⋊4Dic6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.17D4 | 288,547 |
C3⋊Dic3.18D4 = C62.83C23 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.18D4 | 288,561 |
C3⋊Dic3.19D4 = D12⋊D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 8+ | C3:Dic3.19D4 | 288,574 |
C3⋊Dic3.20D4 = Dic6⋊D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 8+ | C3:Dic3.20D4 | 288,578 |
C3⋊Dic3.21D4 = D12⋊5D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 8+ | C3:Dic3.21D4 | 288,585 |
C3⋊Dic3.22D4 = D12.9D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.22D4 | 288,588 |
C3⋊Dic3.23D4 = Dic6.9D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.23D4 | 288,592 |
C3⋊Dic3.24D4 = D12.15D6 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.24D4 | 288,599 |
C3⋊Dic3.25D4 = C62.95C23 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.25D4 | 288,601 |
C3⋊Dic3.26D4 = S32⋊Q8 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4 | C3:Dic3.26D4 | 288,868 |
C3⋊Dic3.27D4 = C4.4S3≀C2 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 8+ | C3:Dic3.27D4 | 288,869 |
C3⋊Dic3.28D4 = C32⋊C4⋊Q8 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.28D4 | 288,870 |
C3⋊Dic3.29D4 = C2×C32⋊D8 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.29D4 | 288,883 |
C3⋊Dic3.30D4 = C62.12D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 24 | 4 | C3:Dic3.30D4 | 288,884 |
C3⋊Dic3.31D4 = C62.13D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.31D4 | 288,885 |
C3⋊Dic3.32D4 = C2×C32⋊2SD16 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.32D4 | 288,886 |
C3⋊Dic3.33D4 = C62.15D4 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 48 | 4- | C3:Dic3.33D4 | 288,887 |
C3⋊Dic3.34D4 = C2×C32⋊Q16 | φ: D4/C2 → C22 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.34D4 | 288,888 |
C3⋊Dic3.35D4 = (C3×C24).C4 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.35D4 | 288,418 |
C3⋊Dic3.36D4 = C8.(C32⋊C4) | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.36D4 | 288,419 |
C3⋊Dic3.37D4 = (C3×C12)⋊4C8 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.37D4 | 288,424 |
C3⋊Dic3.38D4 = C32⋊5(C4⋊C8) | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.38D4 | 288,427 |
C3⋊Dic3.39D4 = C24⋊9D6 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.39D4 | 288,444 |
C3⋊Dic3.40D4 = C24⋊4D6 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.40D4 | 288,445 |
C3⋊Dic3.41D4 = C24.23D6 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.41D4 | 288,450 |
C3⋊Dic3.42D4 = D12.2D6 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.42D4 | 288,457 |
C3⋊Dic3.43D4 = D24⋊5S3 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 48 | 4 | C3:Dic3.43D4 | 288,458 |
C3⋊Dic3.44D4 = C62.85C23 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.44D4 | 288,563 |
C3⋊Dic3.45D4 = C12⋊Dic6 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 96 | | C3:Dic3.45D4 | 288,567 |
C3⋊Dic3.46D4 = C62.229C23 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3.46D4 | 288,742 |
C3⋊Dic3.47D4 = C12⋊2Dic6 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 288 | | C3:Dic3.47D4 | 288,745 |
C3⋊Dic3.48D4 = D8×C3⋊S3 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 72 | | C3:Dic3.48D4 | 288,767 |
C3⋊Dic3.49D4 = SD16×C3⋊S3 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 72 | | C3:Dic3.49D4 | 288,770 |
C3⋊Dic3.50D4 = Q16×C3⋊S3 | φ: D4/C4 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3.50D4 | 288,774 |
C3⋊Dic3.51D4 = C62.6(C2×C4) | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.51D4 | 288,426 |
C3⋊Dic3.52D4 = C32⋊6C4≀C2 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.52D4 | 288,431 |
C3⋊Dic3.53D4 = C32⋊7C4≀C2 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8+ | C3:Dic3.53D4 | 288,433 |
C3⋊Dic3.54D4 = C62⋊3C8 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.54D4 | 288,435 |
C3⋊Dic3.55D4 = C62.35C23 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.55D4 | 288,513 |
C3⋊Dic3.56D4 = D12.D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.56D4 | 288,575 |
C3⋊Dic3.57D4 = Dic6.D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.57D4 | 288,579 |
C3⋊Dic3.58D4 = D12.8D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8- | C3:Dic3.58D4 | 288,584 |
C3⋊Dic3.59D4 = D12.10D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8+ | C3:Dic3.59D4 | 288,589 |
C3⋊Dic3.60D4 = Dic6.10D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8+ | C3:Dic3.60D4 | 288,593 |
C3⋊Dic3.61D4 = D12.14D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | 8+ | C3:Dic3.61D4 | 288,598 |
C3⋊Dic3.62D4 = C62⋊4Q8 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 48 | | C3:Dic3.62D4 | 288,630 |
C3⋊Dic3.63D4 = C62⋊6Q8 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3.63D4 | 288,735 |
C3⋊Dic3.64D4 = C62.240C23 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3.64D4 | 288,753 |
C3⋊Dic3.65D4 = C24⋊8D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 72 | | C3:Dic3.65D4 | 288,768 |
C3⋊Dic3.66D4 = C24⋊7D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 72 | | C3:Dic3.66D4 | 288,771 |
C3⋊Dic3.67D4 = C24.32D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3.67D4 | 288,772 |
C3⋊Dic3.68D4 = C24.35D6 | φ: D4/C22 → C2 ⊆ Out C3⋊Dic3 | 144 | | C3:Dic3.68D4 | 288,775 |
C3⋊Dic3.69D4 = C24.26D6 | φ: trivial image | 144 | | C3:Dic3.69D4 | 288,769 |
C3⋊Dic3.70D4 = C24.40D6 | φ: trivial image | 144 | | C3:Dic3.70D4 | 288,773 |
C3⋊Dic3.71D4 = C24.28D6 | φ: trivial image | 144 | | C3:Dic3.71D4 | 288,776 |