Extensions 1→N→G→Q→1 with N=C3⋊Dic3 and Q=D4

Direct product G=N×Q with N=C3⋊Dic3 and Q=D4
dρLabelID
D4×C3⋊Dic3144D4xC3:Dic3288,791

Semidirect products G=N:Q with N=C3⋊Dic3 and Q=D4
extensionφ:Q→Out NdρLabelID
C3⋊Dic31D4 = C62.55C23φ: D4/C2C22 ⊆ Out C3⋊Dic396C3:Dic3:1D4288,533
C3⋊Dic32D4 = C62.113C23φ: D4/C2C22 ⊆ Out C3⋊Dic348C3:Dic3:2D4288,619
C3⋊Dic33D4 = C62.121C23φ: D4/C2C22 ⊆ Out C3⋊Dic348C3:Dic3:3D4288,627
C3⋊Dic34D4 = C4×S3≀C2φ: D4/C2C22 ⊆ Out C3⋊Dic3244C3:Dic3:4D4288,877
C3⋊Dic35D4 = S32⋊D4φ: D4/C2C22 ⊆ Out C3⋊Dic3244C3:Dic3:5D4288,878
C3⋊Dic36D4 = C4⋊S3≀C2φ: D4/C2C22 ⊆ Out C3⋊Dic3248+C3:Dic3:6D4288,879
C3⋊Dic37D4 = D12⋊Dic3φ: D4/C4C2 ⊆ Out C3⋊Dic396C3:Dic3:7D4288,546
C3⋊Dic38D4 = C62.72C23φ: D4/C4C2 ⊆ Out C3⋊Dic396C3:Dic3:8D4288,550
C3⋊Dic39D4 = C62.84C23φ: D4/C4C2 ⊆ Out C3⋊Dic396C3:Dic3:9D4288,562
C3⋊Dic310D4 = C62.258C23φ: D4/C4C2 ⊆ Out C3⋊Dic3144C3:Dic3:10D4288,797
C3⋊Dic311D4 = C62.51C23φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3:11D4288,529
C3⋊Dic312D4 = C62.82C23φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3:12D4288,560
C3⋊Dic313D4 = C62.115C23φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3:13D4288,621
C3⋊Dic314D4 = C627D4φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3:14D4288,628
C3⋊Dic315D4 = C62.228C23φ: D4/C22C2 ⊆ Out C3⋊Dic3144C3:Dic3:15D4288,741
C3⋊Dic316D4 = C6214D4φ: D4/C22C2 ⊆ Out C3⋊Dic3144C3:Dic3:16D4288,796
C3⋊Dic317D4 = C62.225C23φ: trivial image144C3:Dic3:17D4288,738
C3⋊Dic318D4 = C62.237C23φ: trivial image144C3:Dic3:18D4288,750

Non-split extensions G=N.Q with N=C3⋊Dic3 and Q=D4
extensionφ:Q→Out NdρLabelID
C3⋊Dic3.1D4 = S32⋊C8φ: D4/C2C22 ⊆ Out C3⋊Dic3244C3:Dic3.1D4288,374
C3⋊Dic3.2D4 = C4.S3≀C2φ: D4/C2C22 ⊆ Out C3⋊Dic3244C3:Dic3.2D4288,375
C3⋊Dic3.3D4 = (C3×C12).D4φ: D4/C2C22 ⊆ Out C3⋊Dic3484C3:Dic3.3D4288,376
C3⋊Dic3.4D4 = C62.3D4φ: D4/C2C22 ⊆ Out C3⋊Dic348C3:Dic3.4D4288,387
C3⋊Dic3.5D4 = C62.4D4φ: D4/C2C22 ⊆ Out C3⋊Dic396C3:Dic3.5D4288,388
C3⋊Dic3.6D4 = Dic3≀C2φ: D4/C2C22 ⊆ Out C3⋊Dic3244-C3:Dic3.6D4288,389
C3⋊Dic3.7D4 = C4.4PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C3⋊Dic3488C3:Dic3.7D4288,392
C3⋊Dic3.8D4 = C62.2Q8φ: D4/C2C22 ⊆ Out C3⋊Dic3488-C3:Dic3.8D4288,396
C3⋊Dic3.9D4 = C3⋊Dic3.D4φ: D4/C2C22 ⊆ Out C3⋊Dic3484-C3:Dic3.9D4288,428
C3⋊Dic3.10D4 = C3⋊S3.5D8φ: D4/C2C22 ⊆ Out C3⋊Dic3248+C3:Dic3.10D4288,430
C3⋊Dic3.11D4 = C3⋊S3.5Q16φ: D4/C2C22 ⊆ Out C3⋊Dic3488-C3:Dic3.11D4288,432
C3⋊Dic3.12D4 = (C2×C62).C4φ: D4/C2C22 ⊆ Out C3⋊Dic3244C3:Dic3.12D4288,436
C3⋊Dic3.13D4 = C246D6φ: D4/C2C22 ⊆ Out C3⋊Dic3484C3:Dic3.13D4288,446
C3⋊Dic3.14D4 = D12.4D6φ: D4/C2C22 ⊆ Out C3⋊Dic3484C3:Dic3.14D4288,459
C3⋊Dic3.15D4 = C62.10C23φ: D4/C2C22 ⊆ Out C3⋊Dic396C3:Dic3.15D4288,488
C3⋊Dic3.16D4 = D63Dic6φ: D4/C2C22 ⊆ Out C3⋊Dic396C3:Dic3.16D4288,544
C3⋊Dic3.17D4 = D64Dic6φ: D4/C2C22 ⊆ Out C3⋊Dic396C3:Dic3.17D4288,547
C3⋊Dic3.18D4 = C62.83C23φ: D4/C2C22 ⊆ Out C3⋊Dic396C3:Dic3.18D4288,561
C3⋊Dic3.19D4 = D12⋊D6φ: D4/C2C22 ⊆ Out C3⋊Dic3248+C3:Dic3.19D4288,574
C3⋊Dic3.20D4 = Dic6⋊D6φ: D4/C2C22 ⊆ Out C3⋊Dic3248+C3:Dic3.20D4288,578
C3⋊Dic3.21D4 = D125D6φ: D4/C2C22 ⊆ Out C3⋊Dic3248+C3:Dic3.21D4288,585
C3⋊Dic3.22D4 = D12.9D6φ: D4/C2C22 ⊆ Out C3⋊Dic3488-C3:Dic3.22D4288,588
C3⋊Dic3.23D4 = Dic6.9D6φ: D4/C2C22 ⊆ Out C3⋊Dic3488-C3:Dic3.23D4288,592
C3⋊Dic3.24D4 = D12.15D6φ: D4/C2C22 ⊆ Out C3⋊Dic3488-C3:Dic3.24D4288,599
C3⋊Dic3.25D4 = C62.95C23φ: D4/C2C22 ⊆ Out C3⋊Dic348C3:Dic3.25D4288,601
C3⋊Dic3.26D4 = S32⋊Q8φ: D4/C2C22 ⊆ Out C3⋊Dic3244C3:Dic3.26D4288,868
C3⋊Dic3.27D4 = C4.4S3≀C2φ: D4/C2C22 ⊆ Out C3⋊Dic3248+C3:Dic3.27D4288,869
C3⋊Dic3.28D4 = C32⋊C4⋊Q8φ: D4/C2C22 ⊆ Out C3⋊Dic3488-C3:Dic3.28D4288,870
C3⋊Dic3.29D4 = C2×C32⋊D8φ: D4/C2C22 ⊆ Out C3⋊Dic348C3:Dic3.29D4288,883
C3⋊Dic3.30D4 = C62.12D4φ: D4/C2C22 ⊆ Out C3⋊Dic3244C3:Dic3.30D4288,884
C3⋊Dic3.31D4 = C62.13D4φ: D4/C2C22 ⊆ Out C3⋊Dic3488-C3:Dic3.31D4288,885
C3⋊Dic3.32D4 = C2×C322SD16φ: D4/C2C22 ⊆ Out C3⋊Dic348C3:Dic3.32D4288,886
C3⋊Dic3.33D4 = C62.15D4φ: D4/C2C22 ⊆ Out C3⋊Dic3484-C3:Dic3.33D4288,887
C3⋊Dic3.34D4 = C2×C32⋊Q16φ: D4/C2C22 ⊆ Out C3⋊Dic396C3:Dic3.34D4288,888
C3⋊Dic3.35D4 = (C3×C24).C4φ: D4/C4C2 ⊆ Out C3⋊Dic3484C3:Dic3.35D4288,418
C3⋊Dic3.36D4 = C8.(C32⋊C4)φ: D4/C4C2 ⊆ Out C3⋊Dic3484C3:Dic3.36D4288,419
C3⋊Dic3.37D4 = (C3×C12)⋊4C8φ: D4/C4C2 ⊆ Out C3⋊Dic396C3:Dic3.37D4288,424
C3⋊Dic3.38D4 = C325(C4⋊C8)φ: D4/C4C2 ⊆ Out C3⋊Dic396C3:Dic3.38D4288,427
C3⋊Dic3.39D4 = C249D6φ: D4/C4C2 ⊆ Out C3⋊Dic3484C3:Dic3.39D4288,444
C3⋊Dic3.40D4 = C244D6φ: D4/C4C2 ⊆ Out C3⋊Dic3484C3:Dic3.40D4288,445
C3⋊Dic3.41D4 = C24.23D6φ: D4/C4C2 ⊆ Out C3⋊Dic3484C3:Dic3.41D4288,450
C3⋊Dic3.42D4 = D12.2D6φ: D4/C4C2 ⊆ Out C3⋊Dic3484C3:Dic3.42D4288,457
C3⋊Dic3.43D4 = D245S3φ: D4/C4C2 ⊆ Out C3⋊Dic3484C3:Dic3.43D4288,458
C3⋊Dic3.44D4 = C62.85C23φ: D4/C4C2 ⊆ Out C3⋊Dic396C3:Dic3.44D4288,563
C3⋊Dic3.45D4 = C12⋊Dic6φ: D4/C4C2 ⊆ Out C3⋊Dic396C3:Dic3.45D4288,567
C3⋊Dic3.46D4 = C62.229C23φ: D4/C4C2 ⊆ Out C3⋊Dic3144C3:Dic3.46D4288,742
C3⋊Dic3.47D4 = C122Dic6φ: D4/C4C2 ⊆ Out C3⋊Dic3288C3:Dic3.47D4288,745
C3⋊Dic3.48D4 = D8×C3⋊S3φ: D4/C4C2 ⊆ Out C3⋊Dic372C3:Dic3.48D4288,767
C3⋊Dic3.49D4 = SD16×C3⋊S3φ: D4/C4C2 ⊆ Out C3⋊Dic372C3:Dic3.49D4288,770
C3⋊Dic3.50D4 = Q16×C3⋊S3φ: D4/C4C2 ⊆ Out C3⋊Dic3144C3:Dic3.50D4288,774
C3⋊Dic3.51D4 = C62.6(C2×C4)φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3.51D4288,426
C3⋊Dic3.52D4 = C326C4≀C2φ: D4/C22C2 ⊆ Out C3⋊Dic3488-C3:Dic3.52D4288,431
C3⋊Dic3.53D4 = C327C4≀C2φ: D4/C22C2 ⊆ Out C3⋊Dic3488+C3:Dic3.53D4288,433
C3⋊Dic3.54D4 = C623C8φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3.54D4288,435
C3⋊Dic3.55D4 = C62.35C23φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3.55D4288,513
C3⋊Dic3.56D4 = D12.D6φ: D4/C22C2 ⊆ Out C3⋊Dic3488-C3:Dic3.56D4288,575
C3⋊Dic3.57D4 = Dic6.D6φ: D4/C22C2 ⊆ Out C3⋊Dic3488-C3:Dic3.57D4288,579
C3⋊Dic3.58D4 = D12.8D6φ: D4/C22C2 ⊆ Out C3⋊Dic3488-C3:Dic3.58D4288,584
C3⋊Dic3.59D4 = D12.10D6φ: D4/C22C2 ⊆ Out C3⋊Dic3488+C3:Dic3.59D4288,589
C3⋊Dic3.60D4 = Dic6.10D6φ: D4/C22C2 ⊆ Out C3⋊Dic3488+C3:Dic3.60D4288,593
C3⋊Dic3.61D4 = D12.14D6φ: D4/C22C2 ⊆ Out C3⋊Dic3488+C3:Dic3.61D4288,598
C3⋊Dic3.62D4 = C624Q8φ: D4/C22C2 ⊆ Out C3⋊Dic348C3:Dic3.62D4288,630
C3⋊Dic3.63D4 = C626Q8φ: D4/C22C2 ⊆ Out C3⋊Dic3144C3:Dic3.63D4288,735
C3⋊Dic3.64D4 = C62.240C23φ: D4/C22C2 ⊆ Out C3⋊Dic3144C3:Dic3.64D4288,753
C3⋊Dic3.65D4 = C248D6φ: D4/C22C2 ⊆ Out C3⋊Dic372C3:Dic3.65D4288,768
C3⋊Dic3.66D4 = C247D6φ: D4/C22C2 ⊆ Out C3⋊Dic372C3:Dic3.66D4288,771
C3⋊Dic3.67D4 = C24.32D6φ: D4/C22C2 ⊆ Out C3⋊Dic3144C3:Dic3.67D4288,772
C3⋊Dic3.68D4 = C24.35D6φ: D4/C22C2 ⊆ Out C3⋊Dic3144C3:Dic3.68D4288,775
C3⋊Dic3.69D4 = C24.26D6φ: trivial image144C3:Dic3.69D4288,769
C3⋊Dic3.70D4 = C24.40D6φ: trivial image144C3:Dic3.70D4288,773
C3⋊Dic3.71D4 = C24.28D6φ: trivial image144C3:Dic3.71D4288,776

׿
×
𝔽