# Extensions 1→N→G→Q→1 with N=C32 and Q=C2×SD16

Direct product G=N×Q with N=C32 and Q=C2×SD16
dρLabelID
SD16×C3×C6144SD16xC3xC6288,830

Semidirect products G=N:Q with N=C32 and Q=C2×SD16
extensionφ:Q→Aut NdρLabelID
C32⋊(C2×SD16) = C2×AΓL1(𝔽9)φ: C2×SD16/C2SD16 ⊆ Aut C32188+C3^2:(C2xSD16)288,1027
C322(C2×SD16) = C3⋊S32SD16φ: C2×SD16/C4D4 ⊆ Aut C32248+C3^2:2(C2xSD16)288,875
C323(C2×SD16) = C2×C322SD16φ: C2×SD16/C22D4 ⊆ Aut C3248C3^2:3(C2xSD16)288,886
C324(C2×SD16) = S3×C24⋊C2φ: C2×SD16/C8C22 ⊆ Aut C32484C3^2:4(C2xSD16)288,440
C325(C2×SD16) = C249D6φ: C2×SD16/C8C22 ⊆ Aut C32484C3^2:5(C2xSD16)288,444
C326(C2×SD16) = C2×Dic6⋊S3φ: C2×SD16/C2×C4C22 ⊆ Aut C3296C3^2:6(C2xSD16)288,474
C327(C2×SD16) = C2×D12.S3φ: C2×SD16/C2×C4C22 ⊆ Aut C3296C3^2:7(C2xSD16)288,476
C328(C2×SD16) = C2×C325SD16φ: C2×SD16/C2×C4C22 ⊆ Aut C3248C3^2:8(C2xSD16)288,480
C329(C2×SD16) = S3×D4.S3φ: C2×SD16/D4C22 ⊆ Aut C32488-C3^2:9(C2xSD16)288,576
C3210(C2×SD16) = Dic6⋊D6φ: C2×SD16/D4C22 ⊆ Aut C32248+C3^2:10(C2xSD16)288,578
C3211(C2×SD16) = S3×Q82S3φ: C2×SD16/Q8C22 ⊆ Aut C32488+C3^2:11(C2xSD16)288,586
C3212(C2×SD16) = D12.9D6φ: C2×SD16/Q8C22 ⊆ Aut C32488-C3^2:12(C2xSD16)288,588
C3213(C2×SD16) = C6×C24⋊C2φ: C2×SD16/C2×C8C2 ⊆ Aut C3296C3^2:13(C2xSD16)288,673
C3214(C2×SD16) = C2×C242S3φ: C2×SD16/C2×C8C2 ⊆ Aut C32144C3^2:14(C2xSD16)288,759
C3215(C2×SD16) = C3×S3×SD16φ: C2×SD16/SD16C2 ⊆ Aut C32484C3^2:15(C2xSD16)288,684
C3216(C2×SD16) = SD16×C3⋊S3φ: C2×SD16/SD16C2 ⊆ Aut C3272C3^2:16(C2xSD16)288,770
C3217(C2×SD16) = C6×D4.S3φ: C2×SD16/C2×D4C2 ⊆ Aut C3248C3^2:17(C2xSD16)288,704
C3218(C2×SD16) = C2×C329SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C32144C3^2:18(C2xSD16)288,790
C3219(C2×SD16) = C6×Q82S3φ: C2×SD16/C2×Q8C2 ⊆ Aut C3296C3^2:19(C2xSD16)288,712
C3220(C2×SD16) = C2×C3211SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C32144C3^2:20(C2xSD16)288,798

׿
×
𝔽