extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3xQ8) = C62.8C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.1(S3xQ8) | 288,486 |
C6.2(S3xQ8) = C62.9C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.2(S3xQ8) | 288,487 |
C6.3(S3xQ8) = C62.13C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.3(S3xQ8) | 288,491 |
C6.4(S3xQ8) = C62.17C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.4(S3xQ8) | 288,495 |
C6.5(S3xQ8) = C62.35C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.5(S3xQ8) | 288,513 |
C6.6(S3xQ8) = C62.40C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.6(S3xQ8) | 288,518 |
C6.7(S3xQ8) = C12.30D12 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.7(S3xQ8) | 288,519 |
C6.8(S3xQ8) = C62.43C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.8(S3xQ8) | 288,521 |
C6.9(S3xQ8) = C62.53C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.9(S3xQ8) | 288,531 |
C6.10(S3xQ8) = C62.58C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.10(S3xQ8) | 288,536 |
C6.11(S3xQ8) = C62.65C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.11(S3xQ8) | 288,543 |
C6.12(S3xQ8) = C62.70C23 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.12(S3xQ8) | 288,548 |
C6.13(S3xQ8) = C12:Dic6 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.13(S3xQ8) | 288,567 |
C6.14(S3xQ8) = Dic3:5Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.14(S3xQ8) | 288,485 |
C6.15(S3xQ8) = C62.10C23 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.15(S3xQ8) | 288,488 |
C6.16(S3xQ8) = Dic3xDic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.16(S3xQ8) | 288,490 |
C6.17(S3xQ8) = Dic3:6Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.17(S3xQ8) | 288,492 |
C6.18(S3xQ8) = Dic3.Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.18(S3xQ8) | 288,493 |
C6.19(S3xQ8) = C62.16C23 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.19(S3xQ8) | 288,494 |
C6.20(S3xQ8) = D6:Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.20(S3xQ8) | 288,499 |
C6.21(S3xQ8) = D6:6Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.21(S3xQ8) | 288,504 |
C6.22(S3xQ8) = D6:7Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.22(S3xQ8) | 288,505 |
C6.23(S3xQ8) = Dic3:Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.23(S3xQ8) | 288,514 |
C6.24(S3xQ8) = C62.37C23 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.24(S3xQ8) | 288,515 |
C6.25(S3xQ8) = S3xDic3:C4 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.25(S3xQ8) | 288,524 |
C6.26(S3xQ8) = D6:1Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.26(S3xQ8) | 288,535 |
C6.27(S3xQ8) = S3xC4:Dic3 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.27(S3xQ8) | 288,537 |
C6.28(S3xQ8) = D6:2Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.28(S3xQ8) | 288,541 |
C6.29(S3xQ8) = D6:3Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.29(S3xQ8) | 288,544 |
C6.30(S3xQ8) = D6:4Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.30(S3xQ8) | 288,547 |
C6.31(S3xQ8) = C12:3Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.31(S3xQ8) | 288,566 |
C6.32(S3xQ8) = Dic9:3Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.32(S3xQ8) | 288,97 |
C6.33(S3xQ8) = C36:Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.33(S3xQ8) | 288,98 |
C6.34(S3xQ8) = Dic9.Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.34(S3xQ8) | 288,99 |
C6.35(S3xQ8) = C4:C4xD9 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.35(S3xQ8) | 288,101 |
C6.36(S3xQ8) = D18:Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.36(S3xQ8) | 288,106 |
C6.37(S3xQ8) = D18:2Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.37(S3xQ8) | 288,107 |
C6.38(S3xQ8) = Dic9:Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.38(S3xQ8) | 288,154 |
C6.39(S3xQ8) = Q8xDic9 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.39(S3xQ8) | 288,155 |
C6.40(S3xQ8) = D18:3Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.40(S3xQ8) | 288,156 |
C6.41(S3xQ8) = C2xQ8xD9 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.41(S3xQ8) | 288,359 |
C6.42(S3xQ8) = C62.231C23 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.42(S3xQ8) | 288,744 |
C6.43(S3xQ8) = C12:2Dic6 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.43(S3xQ8) | 288,745 |
C6.44(S3xQ8) = C62.233C23 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.44(S3xQ8) | 288,746 |
C6.45(S3xQ8) = C4:C4xC3:S3 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.45(S3xQ8) | 288,748 |
C6.46(S3xQ8) = C62.240C23 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.46(S3xQ8) | 288,753 |
C6.47(S3xQ8) = C12.31D12 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.47(S3xQ8) | 288,754 |
C6.48(S3xQ8) = C62.259C23 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.48(S3xQ8) | 288,801 |
C6.49(S3xQ8) = Q8xC3:Dic3 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 288 | | C6.49(S3xQ8) | 288,802 |
C6.50(S3xQ8) = C62.261C23 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C6 | 144 | | C6.50(S3xQ8) | 288,803 |
C6.51(S3xQ8) = C3xDic6:C4 | central extension (φ=1) | 96 | | C6.51(S3xQ8) | 288,658 |
C6.52(S3xQ8) = C3xC12:Q8 | central extension (φ=1) | 96 | | C6.52(S3xQ8) | 288,659 |
C6.53(S3xQ8) = C3xDic3.Q8 | central extension (φ=1) | 96 | | C6.53(S3xQ8) | 288,660 |
C6.54(S3xQ8) = C3xS3xC4:C4 | central extension (φ=1) | 96 | | C6.54(S3xQ8) | 288,662 |
C6.55(S3xQ8) = C3xD6:Q8 | central extension (φ=1) | 96 | | C6.55(S3xQ8) | 288,667 |
C6.56(S3xQ8) = C3xC4.D12 | central extension (φ=1) | 96 | | C6.56(S3xQ8) | 288,668 |
C6.57(S3xQ8) = C3xDic3:Q8 | central extension (φ=1) | 96 | | C6.57(S3xQ8) | 288,715 |
C6.58(S3xQ8) = C3xQ8xDic3 | central extension (φ=1) | 96 | | C6.58(S3xQ8) | 288,716 |
C6.59(S3xQ8) = C3xD6:3Q8 | central extension (φ=1) | 96 | | C6.59(S3xQ8) | 288,717 |