Extensions 1→N→G→Q→1 with N=C6 and Q=S3×Q8

Direct product G=N×Q with N=C6 and Q=S3×Q8
dρLabelID
S3×C6×Q896S3xC6xQ8288,995

Semidirect products G=N:Q with N=C6 and Q=S3×Q8
extensionφ:Q→Aut NdρLabelID
C61(S3×Q8) = C2×Dic3.D6φ: S3×Q8/Dic6C2 ⊆ Aut C648C6:1(S3xQ8)288,947
C62(S3×Q8) = C2×S3×Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6:2(S3xQ8)288,942
C63(S3×Q8) = C2×Q8×C3⋊S3φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6:3(S3xQ8)288,1010

Non-split extensions G=N.Q with N=C6 and Q=S3×Q8
extensionφ:Q→Aut NdρLabelID
C6.1(S3×Q8) = C62.8C23φ: S3×Q8/Dic6C2 ⊆ Aut C696C6.1(S3xQ8)288,486
C6.2(S3×Q8) = C62.9C23φ: S3×Q8/Dic6C2 ⊆ Aut C696C6.2(S3xQ8)288,487
C6.3(S3×Q8) = C62.13C23φ: S3×Q8/Dic6C2 ⊆ Aut C696C6.3(S3xQ8)288,491
C6.4(S3×Q8) = C62.17C23φ: S3×Q8/Dic6C2 ⊆ Aut C696C6.4(S3xQ8)288,495
C6.5(S3×Q8) = C62.35C23φ: S3×Q8/Dic6C2 ⊆ Aut C648C6.5(S3xQ8)288,513
C6.6(S3×Q8) = C62.40C23φ: S3×Q8/Dic6C2 ⊆ Aut C696C6.6(S3xQ8)288,518
C6.7(S3×Q8) = C12.30D12φ: S3×Q8/Dic6C2 ⊆ Aut C648C6.7(S3xQ8)288,519
C6.8(S3×Q8) = C62.43C23φ: S3×Q8/Dic6C2 ⊆ Aut C696C6.8(S3xQ8)288,521
C6.9(S3×Q8) = C62.53C23φ: S3×Q8/Dic6C2 ⊆ Aut C648C6.9(S3xQ8)288,531
C6.10(S3×Q8) = C62.58C23φ: S3×Q8/Dic6C2 ⊆ Aut C648C6.10(S3xQ8)288,536
C6.11(S3×Q8) = C62.65C23φ: S3×Q8/Dic6C2 ⊆ Aut C648C6.11(S3xQ8)288,543
C6.12(S3×Q8) = C62.70C23φ: S3×Q8/Dic6C2 ⊆ Aut C648C6.12(S3xQ8)288,548
C6.13(S3×Q8) = C12⋊Dic6φ: S3×Q8/Dic6C2 ⊆ Aut C696C6.13(S3xQ8)288,567
C6.14(S3×Q8) = Dic35Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.14(S3xQ8)288,485
C6.15(S3×Q8) = C62.10C23φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.15(S3xQ8)288,488
C6.16(S3×Q8) = Dic3×Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.16(S3xQ8)288,490
C6.17(S3×Q8) = Dic36Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.17(S3xQ8)288,492
C6.18(S3×Q8) = Dic3.Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.18(S3xQ8)288,493
C6.19(S3×Q8) = C62.16C23φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.19(S3xQ8)288,494
C6.20(S3×Q8) = D6⋊Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.20(S3xQ8)288,499
C6.21(S3×Q8) = D66Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.21(S3xQ8)288,504
C6.22(S3×Q8) = D67Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.22(S3xQ8)288,505
C6.23(S3×Q8) = Dic3⋊Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.23(S3xQ8)288,514
C6.24(S3×Q8) = C62.37C23φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.24(S3xQ8)288,515
C6.25(S3×Q8) = S3×Dic3⋊C4φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.25(S3xQ8)288,524
C6.26(S3×Q8) = D61Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.26(S3xQ8)288,535
C6.27(S3×Q8) = S3×C4⋊Dic3φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.27(S3xQ8)288,537
C6.28(S3×Q8) = D62Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.28(S3xQ8)288,541
C6.29(S3×Q8) = D63Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.29(S3xQ8)288,544
C6.30(S3×Q8) = D64Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.30(S3xQ8)288,547
C6.31(S3×Q8) = C123Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C696C6.31(S3xQ8)288,566
C6.32(S3×Q8) = Dic93Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.32(S3xQ8)288,97
C6.33(S3×Q8) = C36⋊Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.33(S3xQ8)288,98
C6.34(S3×Q8) = Dic9.Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.34(S3xQ8)288,99
C6.35(S3×Q8) = C4⋊C4×D9φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.35(S3xQ8)288,101
C6.36(S3×Q8) = D18⋊Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.36(S3xQ8)288,106
C6.37(S3×Q8) = D182Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.37(S3xQ8)288,107
C6.38(S3×Q8) = Dic9⋊Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.38(S3xQ8)288,154
C6.39(S3×Q8) = Q8×Dic9φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.39(S3xQ8)288,155
C6.40(S3×Q8) = D183Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.40(S3xQ8)288,156
C6.41(S3×Q8) = C2×Q8×D9φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.41(S3xQ8)288,359
C6.42(S3×Q8) = C62.231C23φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.42(S3xQ8)288,744
C6.43(S3×Q8) = C122Dic6φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.43(S3xQ8)288,745
C6.44(S3×Q8) = C62.233C23φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.44(S3xQ8)288,746
C6.45(S3×Q8) = C4⋊C4×C3⋊S3φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.45(S3xQ8)288,748
C6.46(S3×Q8) = C62.240C23φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.46(S3xQ8)288,753
C6.47(S3×Q8) = C12.31D12φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.47(S3xQ8)288,754
C6.48(S3×Q8) = C62.259C23φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.48(S3xQ8)288,801
C6.49(S3×Q8) = Q8×C3⋊Dic3φ: S3×Q8/C3×Q8C2 ⊆ Aut C6288C6.49(S3xQ8)288,802
C6.50(S3×Q8) = C62.261C23φ: S3×Q8/C3×Q8C2 ⊆ Aut C6144C6.50(S3xQ8)288,803
C6.51(S3×Q8) = C3×Dic6⋊C4central extension (φ=1)96C6.51(S3xQ8)288,658
C6.52(S3×Q8) = C3×C12⋊Q8central extension (φ=1)96C6.52(S3xQ8)288,659
C6.53(S3×Q8) = C3×Dic3.Q8central extension (φ=1)96C6.53(S3xQ8)288,660
C6.54(S3×Q8) = C3×S3×C4⋊C4central extension (φ=1)96C6.54(S3xQ8)288,662
C6.55(S3×Q8) = C3×D6⋊Q8central extension (φ=1)96C6.55(S3xQ8)288,667
C6.56(S3×Q8) = C3×C4.D12central extension (φ=1)96C6.56(S3xQ8)288,668
C6.57(S3×Q8) = C3×Dic3⋊Q8central extension (φ=1)96C6.57(S3xQ8)288,715
C6.58(S3×Q8) = C3×Q8×Dic3central extension (φ=1)96C6.58(S3xQ8)288,716
C6.59(S3×Q8) = C3×D63Q8central extension (φ=1)96C6.59(S3xQ8)288,717

׿
×
𝔽