Copied to
clipboard

G = Dic35Dic6order 288 = 25·32

1st semidirect product of Dic3 and Dic6 acting through Inn(Dic3)

metabelian, supersoluble, monomial

Aliases: Dic35Dic6, C62.7C23, C322(C4×Q8), C32(C4×Dic6), Dic32.8C2, C6.14(S3×Q8), (C3×Dic3)⋊5Q8, C322Q85C4, C6.1(C2×Dic6), C2.1(S3×Dic6), (C2×C12).185D6, Dic3⋊C4.9S3, (C4×Dic3).8S3, Dic3.3(C4×S3), C6.50(C4○D12), (Dic3×C12).2C2, (C2×Dic3).51D6, C31(Dic6⋊C4), C6.30(D42S3), Dic3⋊Dic3.4C2, (C6×C12).209C22, C2.2(D6.3D6), C6.Dic6.7C2, (C6×Dic3).29C22, C6.8(S3×C2×C4), C2.10(C4×S32), (C2×C4).38S32, (C3×C6).6(C2×Q8), C22.16(C2×S32), (C3×C6).8(C22×C4), (C3×C6).55(C4○D4), (C3×Dic3⋊C4).1C2, C3⋊Dic3.20(C2×C4), (C2×C6).26(C22×S3), (C2×C322Q8).6C2, (C3×Dic3).13(C2×C4), (C2×C3⋊Dic3).10C22, SmallGroup(288,485)

Series: Derived Chief Lower central Upper central

C1C3×C6 — Dic35Dic6
C1C3C32C3×C6C62C6×Dic3Dic32 — Dic35Dic6
C32C3×C6 — Dic35Dic6
C1C22C2×C4

Generators and relations for Dic35Dic6
 G = < a,b,c,d | a6=c12=1, b2=a3, d2=c6, bab-1=cac-1=dad-1=a-1, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 458 in 153 conjugacy classes, 62 normal (44 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C2×C4, Q8, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C42, C4⋊C4, C2×Q8, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C4×Q8, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, C4×Dic3, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C4×C12, C3×C4⋊C4, C2×Dic6, C322Q8, C6×Dic3, C2×C3⋊Dic3, C6×C12, C4×Dic6, Dic6⋊C4, Dic32, Dic3⋊Dic3, Dic3×C12, C3×Dic3⋊C4, C6.Dic6, C2×C322Q8, Dic35Dic6
Quotients: C1, C2, C4, C22, S3, C2×C4, Q8, C23, D6, C22×C4, C2×Q8, C4○D4, Dic6, C4×S3, C22×S3, C4×Q8, S32, C2×Dic6, S3×C2×C4, C4○D12, D42S3, S3×Q8, C2×S32, C4×Dic6, Dic6⋊C4, S3×Dic6, C4×S32, D6.3D6, Dic35Dic6

Smallest permutation representation of Dic35Dic6
On 96 points
Generators in S96
(1 28 5 32 9 36)(2 25 10 33 6 29)(3 30 7 34 11 26)(4 27 12 35 8 31)(13 55 17 59 21 51)(14 52 22 60 18 56)(15 57 19 49 23 53)(16 54 24 50 20 58)(37 86 45 94 41 90)(38 91 42 95 46 87)(39 88 47 96 43 92)(40 93 44 85 48 89)(61 73 69 81 65 77)(62 78 66 82 70 74)(63 75 71 83 67 79)(64 80 68 84 72 76)
(1 47 32 92)(2 48 33 93)(3 37 34 94)(4 38 35 95)(5 39 36 96)(6 40 25 85)(7 41 26 86)(8 42 27 87)(9 43 28 88)(10 44 29 89)(11 45 30 90)(12 46 31 91)(13 75 59 67)(14 76 60 68)(15 77 49 69)(16 78 50 70)(17 79 51 71)(18 80 52 72)(19 81 53 61)(20 82 54 62)(21 83 55 63)(22 84 56 64)(23 73 57 65)(24 74 58 66)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 51 7 57)(2 50 8 56)(3 49 9 55)(4 60 10 54)(5 59 11 53)(6 58 12 52)(13 30 19 36)(14 29 20 35)(15 28 21 34)(16 27 22 33)(17 26 23 32)(18 25 24 31)(37 69 43 63)(38 68 44 62)(39 67 45 61)(40 66 46 72)(41 65 47 71)(42 64 48 70)(73 92 79 86)(74 91 80 85)(75 90 81 96)(76 89 82 95)(77 88 83 94)(78 87 84 93)

G:=sub<Sym(96)| (1,28,5,32,9,36)(2,25,10,33,6,29)(3,30,7,34,11,26)(4,27,12,35,8,31)(13,55,17,59,21,51)(14,52,22,60,18,56)(15,57,19,49,23,53)(16,54,24,50,20,58)(37,86,45,94,41,90)(38,91,42,95,46,87)(39,88,47,96,43,92)(40,93,44,85,48,89)(61,73,69,81,65,77)(62,78,66,82,70,74)(63,75,71,83,67,79)(64,80,68,84,72,76), (1,47,32,92)(2,48,33,93)(3,37,34,94)(4,38,35,95)(5,39,36,96)(6,40,25,85)(7,41,26,86)(8,42,27,87)(9,43,28,88)(10,44,29,89)(11,45,30,90)(12,46,31,91)(13,75,59,67)(14,76,60,68)(15,77,49,69)(16,78,50,70)(17,79,51,71)(18,80,52,72)(19,81,53,61)(20,82,54,62)(21,83,55,63)(22,84,56,64)(23,73,57,65)(24,74,58,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51,7,57)(2,50,8,56)(3,49,9,55)(4,60,10,54)(5,59,11,53)(6,58,12,52)(13,30,19,36)(14,29,20,35)(15,28,21,34)(16,27,22,33)(17,26,23,32)(18,25,24,31)(37,69,43,63)(38,68,44,62)(39,67,45,61)(40,66,46,72)(41,65,47,71)(42,64,48,70)(73,92,79,86)(74,91,80,85)(75,90,81,96)(76,89,82,95)(77,88,83,94)(78,87,84,93)>;

G:=Group( (1,28,5,32,9,36)(2,25,10,33,6,29)(3,30,7,34,11,26)(4,27,12,35,8,31)(13,55,17,59,21,51)(14,52,22,60,18,56)(15,57,19,49,23,53)(16,54,24,50,20,58)(37,86,45,94,41,90)(38,91,42,95,46,87)(39,88,47,96,43,92)(40,93,44,85,48,89)(61,73,69,81,65,77)(62,78,66,82,70,74)(63,75,71,83,67,79)(64,80,68,84,72,76), (1,47,32,92)(2,48,33,93)(3,37,34,94)(4,38,35,95)(5,39,36,96)(6,40,25,85)(7,41,26,86)(8,42,27,87)(9,43,28,88)(10,44,29,89)(11,45,30,90)(12,46,31,91)(13,75,59,67)(14,76,60,68)(15,77,49,69)(16,78,50,70)(17,79,51,71)(18,80,52,72)(19,81,53,61)(20,82,54,62)(21,83,55,63)(22,84,56,64)(23,73,57,65)(24,74,58,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51,7,57)(2,50,8,56)(3,49,9,55)(4,60,10,54)(5,59,11,53)(6,58,12,52)(13,30,19,36)(14,29,20,35)(15,28,21,34)(16,27,22,33)(17,26,23,32)(18,25,24,31)(37,69,43,63)(38,68,44,62)(39,67,45,61)(40,66,46,72)(41,65,47,71)(42,64,48,70)(73,92,79,86)(74,91,80,85)(75,90,81,96)(76,89,82,95)(77,88,83,94)(78,87,84,93) );

G=PermutationGroup([[(1,28,5,32,9,36),(2,25,10,33,6,29),(3,30,7,34,11,26),(4,27,12,35,8,31),(13,55,17,59,21,51),(14,52,22,60,18,56),(15,57,19,49,23,53),(16,54,24,50,20,58),(37,86,45,94,41,90),(38,91,42,95,46,87),(39,88,47,96,43,92),(40,93,44,85,48,89),(61,73,69,81,65,77),(62,78,66,82,70,74),(63,75,71,83,67,79),(64,80,68,84,72,76)], [(1,47,32,92),(2,48,33,93),(3,37,34,94),(4,38,35,95),(5,39,36,96),(6,40,25,85),(7,41,26,86),(8,42,27,87),(9,43,28,88),(10,44,29,89),(11,45,30,90),(12,46,31,91),(13,75,59,67),(14,76,60,68),(15,77,49,69),(16,78,50,70),(17,79,51,71),(18,80,52,72),(19,81,53,61),(20,82,54,62),(21,83,55,63),(22,84,56,64),(23,73,57,65),(24,74,58,66)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,51,7,57),(2,50,8,56),(3,49,9,55),(4,60,10,54),(5,59,11,53),(6,58,12,52),(13,30,19,36),(14,29,20,35),(15,28,21,34),(16,27,22,33),(17,26,23,32),(18,25,24,31),(37,69,43,63),(38,68,44,62),(39,67,45,61),(40,66,46,72),(41,65,47,71),(42,64,48,70),(73,92,79,86),(74,91,80,85),(75,90,81,96),(76,89,82,95),(77,88,83,94),(78,87,84,93)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F4G···4L4M4N4O4P6A···6F6G6H6I12A12B12C12D12E···12J12K···12R12S12T12U12V
order12223334444444···444446···66661212121212···1212···1212121212
size11112242233336···6181818182···244422224···46···612121212

54 irreducible representations

dim111111112222222224444444
type+++++++++-++-+--+-
imageC1C2C2C2C2C2C2C4S3S3Q8D6D6C4○D4Dic6C4×S3C4○D12S32D42S3S3×Q8C2×S32S3×Dic6C4×S32D6.3D6
kernelDic35Dic6Dic32Dic3⋊Dic3Dic3×C12C3×Dic3⋊C4C6.Dic6C2×C322Q8C322Q8C4×Dic3Dic3⋊C4C3×Dic3C2×Dic3C2×C12C3×C6Dic3Dic3C6C2×C4C6C6C22C2C2C2
# reps121111181124224841111222

Matrix representation of Dic35Dic6 in GL6(𝔽13)

100000
010000
0012000
0001200
0000012
0000112
,
100000
010000
005000
000500
000001
000010
,
8110000
050000
000100
0012100
000001
000010
,
350000
11100000
0011200
0001200
000001
000010

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[8,0,0,0,0,0,11,5,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[3,11,0,0,0,0,5,10,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

Dic35Dic6 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes_5{\rm Dic}_6
% in TeX

G:=Group("Dic3:5Dic6");
// GroupNames label

G:=SmallGroup(288,485);
// by ID

G=gap.SmallGroup(288,485);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,590,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^12=1,b^2=a^3,d^2=c^6,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽