Extensions 1→N→G→Q→1 with N=C6xC3:C8 and Q=C2

Direct product G=NxQ with N=C6xC3:C8 and Q=C2
dρLabelID
C2xC6xC3:C896C2xC6xC3:C8288,691

Semidirect products G=N:Q with N=C6xC3:C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xC3:C8):1C2 = C12.77D12φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):1C2288,204
(C6xC3:C8):2C2 = C12.78D12φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):2C2288,205
(C6xC3:C8):3C2 = C6.16D24φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):3C2288,211
(C6xC3:C8):4C2 = C6.17D24φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):4C2288,212
(C6xC3:C8):5C2 = C3xC6.D8φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):5C2288,243
(C6xC3:C8):6C2 = C3xD6:C8φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):6C2288,254
(C6xC3:C8):7C2 = C3xC12.55D4φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):7C2288,264
(C6xC3:C8):8C2 = C3xD4:Dic3φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):8C2288,266
(C6xC3:C8):9C2 = C2xC3:D24φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):9C2288,472
(C6xC3:C8):10C2 = D12.27D6φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8):10C2288,477
(C6xC3:C8):11C2 = C2xD12.S3φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):11C2288,476
(C6xC3:C8):12C2 = C2xC32:5SD16φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):12C2288,480
(C6xC3:C8):13C2 = C6xD4:S3φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):13C2288,702
(C6xC3:C8):14C2 = C3xQ8.13D6φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8):14C2288,721
(C6xC3:C8):15C2 = C2xS3xC3:C8φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):15C2288,460
(C6xC3:C8):16C2 = D12.2Dic3φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8):16C2288,462
(C6xC3:C8):17C2 = C2xC12.29D6φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):17C2288,464
(C6xC3:C8):18C2 = C3:C8.22D6φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8):18C2288,465
(C6xC3:C8):19C2 = C2xD6.Dic3φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):19C2288,467
(C6xC3:C8):20C2 = C2xC12.31D6φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):20C2288,468
(C6xC3:C8):21C2 = C6xD4.S3φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):21C2288,704
(C6xC3:C8):22C2 = C6xQ8:2S3φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):22C2288,712
(C6xC3:C8):23C2 = C6xC8:S3φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8):23C2288,671
(C6xC3:C8):24C2 = C3xD12.C4φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8):24C2288,678
(C6xC3:C8):25C2 = C6xC4.Dic3φ: C2/C1C2 ⊆ Out C6xC3:C848(C6xC3:C8):25C2288,692
(C6xC3:C8):26C2 = C3xD4.Dic3φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8):26C2288,719
(C6xC3:C8):27C2 = S3xC2xC24φ: trivial image96(C6xC3:C8):27C2288,670

Non-split extensions G=N.Q with N=C6xC3:C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xC3:C8).1C2 = C6.Dic12φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).1C2288,214
(C6xC3:C8).2C2 = C12.73D12φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).2C2288,215
(C6xC3:C8).3C2 = C12.81D12φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).3C2288,219
(C6xC3:C8).4C2 = C12.15Dic6φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).4C2288,220
(C6xC3:C8).5C2 = C3xC12:C8φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).5C2288,238
(C6xC3:C8).6C2 = C3xC6.SD16φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).6C2288,244
(C6xC3:C8).7C2 = C3xDic3:C8φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).7C2288,248
(C6xC3:C8).8C2 = C3xQ8:2Dic3φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).8C2288,269
(C6xC3:C8).9C2 = C6.18D24φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).9C2288,223
(C6xC3:C8).10C2 = C2xC32:3Q16φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).10C2288,483
(C6xC3:C8).11C2 = C12.82D12φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8).11C2288,225
(C6xC3:C8).12C2 = C12.Dic6φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).12C2288,221
(C6xC3:C8).13C2 = C3xC6.Q16φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).13C2288,241
(C6xC3:C8).14C2 = C6xC3:Q16φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).14C2288,714
(C6xC3:C8).15C2 = C3xC12.53D4φ: C2/C1C2 ⊆ Out C6xC3:C8484(C6xC3:C8).15C2288,256
(C6xC3:C8).16C2 = Dic3xC3:C8φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).16C2288,200
(C6xC3:C8).17C2 = C6.(S3xC8)φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).17C2288,201
(C6xC3:C8).18C2 = C3:C8:Dic3φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).18C2288,202
(C6xC3:C8).19C2 = C2.Dic32φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).19C2288,203
(C6xC3:C8).20C2 = C3xC12.Q8φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).20C2288,242
(C6xC3:C8).21C2 = C3xC42.S3φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).21C2288,237
(C6xC3:C8).22C2 = C3xC24:C4φ: C2/C1C2 ⊆ Out C6xC3:C896(C6xC3:C8).22C2288,249
(C6xC3:C8).23C2 = C12xC3:C8φ: trivial image96(C6xC3:C8).23C2288,236
(C6xC3:C8).24C2 = Dic3xC24φ: trivial image96(C6xC3:C8).24C2288,247

׿
x
:
Z
F
o
wr
Q
<