Copied to
clipboard

G = C3⋊C8.22D6order 288 = 25·32

11st non-split extension by C3⋊C8 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: C3⋊C8.22D6, C33(C8○D12), C12.42(C4×S3), C326(C8○D4), C12⋊S3.2C4, C33(D12.C4), (C2×C12).290D6, C4.Dic311S3, C62.47(C2×C4), C327D4.2C4, C324Q8.2C4, (C6×C12).68C22, C4.4(C6.D6), C12.31D611C2, C12.29D610C2, (C3×C12).146C23, C12.145(C22×S3), C12.59D6.4C2, C22.1(C6.D6), (C2×C3⋊C8)⋊4S3, (C6×C3⋊C8)⋊18C2, C4.92(C2×S32), (C2×C4).63S32, C6.26(S3×C2×C4), (C2×C6).18(C4×S3), (C3×C12).58(C2×C4), (C3×C3⋊C8).27C22, C2.4(C2×C6.D6), (C4×C3⋊S3).59C22, (C3×C4.Dic3)⋊11C2, C3⋊Dic3.19(C2×C4), (C3×C6).42(C22×C4), (C2×C3⋊S3).15(C2×C4), SmallGroup(288,465)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3⋊C8.22D6
C1C3C32C3×C6C3×C12C3×C3⋊C8C12.29D6 — C3⋊C8.22D6
C32C3×C6 — C3⋊C8.22D6
C1C4C2×C4

Generators and relations for C3⋊C8.22D6
 G = < a,b,c,d | a3=b8=1, c6=b2, d2=b4, bab-1=cac-1=dad-1=a-1, cbc-1=dbd-1=b5, dcd-1=b4c5 >

Subgroups: 506 in 144 conjugacy classes, 52 normal (36 characteristic)
C1, C2, C2 [×3], C3 [×2], C3, C4 [×2], C4 [×2], C22, C22 [×2], S3 [×6], C6 [×2], C6 [×4], C8 [×4], C2×C4, C2×C4 [×2], D4 [×3], Q8, C32, Dic3 [×6], C12 [×4], C12 [×2], D6 [×6], C2×C6 [×2], C2×C6, C2×C8 [×3], M4(2) [×3], C4○D4, C3⋊S3 [×2], C3×C6, C3×C6, C3⋊C8 [×2], C3⋊C8 [×2], C24 [×4], Dic6 [×3], C4×S3 [×6], D12 [×3], C3⋊D4 [×6], C2×C12 [×2], C2×C12, C8○D4, C3⋊Dic3 [×2], C3×C12 [×2], C2×C3⋊S3 [×2], C62, S3×C8 [×4], C8⋊S3 [×4], C2×C3⋊C8, C4.Dic3, C2×C24, C3×M4(2), C4○D12 [×3], C3×C3⋊C8 [×2], C3×C3⋊C8 [×2], C324Q8, C4×C3⋊S3 [×2], C12⋊S3, C327D4 [×2], C6×C12, C8○D12, D12.C4, C12.29D6 [×2], C12.31D6 [×2], C6×C3⋊C8, C3×C4.Dic3, C12.59D6, C3⋊C8.22D6
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], S3 [×2], C2×C4 [×6], C23, D6 [×6], C22×C4, C4×S3 [×4], C22×S3 [×2], C8○D4, S32, S3×C2×C4 [×2], C6.D6 [×2], C2×S32, C8○D12, D12.C4, C2×C6.D6, C3⋊C8.22D6

Smallest permutation representation of C3⋊C8.22D6
On 48 points
Generators in S48
(1 9 17)(2 18 10)(3 11 19)(4 20 12)(5 13 21)(6 22 14)(7 15 23)(8 24 16)(25 33 41)(26 42 34)(27 35 43)(28 44 36)(29 37 45)(30 46 38)(31 39 47)(32 48 40)
(1 36 7 42 13 48 19 30)(2 25 8 31 14 37 20 43)(3 38 9 44 15 26 21 32)(4 27 10 33 16 39 22 45)(5 40 11 46 17 28 23 34)(6 29 12 35 18 41 24 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 15 13 3)(2 8 14 20)(4 18 16 6)(5 11 17 23)(7 21 19 9)(10 24 22 12)(25 43 37 31)(26 36 38 48)(27 29 39 41)(28 46 40 34)(30 32 42 44)(33 35 45 47)

G:=sub<Sym(48)| (1,9,17)(2,18,10)(3,11,19)(4,20,12)(5,13,21)(6,22,14)(7,15,23)(8,24,16)(25,33,41)(26,42,34)(27,35,43)(28,44,36)(29,37,45)(30,46,38)(31,39,47)(32,48,40), (1,36,7,42,13,48,19,30)(2,25,8,31,14,37,20,43)(3,38,9,44,15,26,21,32)(4,27,10,33,16,39,22,45)(5,40,11,46,17,28,23,34)(6,29,12,35,18,41,24,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15,13,3)(2,8,14,20)(4,18,16,6)(5,11,17,23)(7,21,19,9)(10,24,22,12)(25,43,37,31)(26,36,38,48)(27,29,39,41)(28,46,40,34)(30,32,42,44)(33,35,45,47)>;

G:=Group( (1,9,17)(2,18,10)(3,11,19)(4,20,12)(5,13,21)(6,22,14)(7,15,23)(8,24,16)(25,33,41)(26,42,34)(27,35,43)(28,44,36)(29,37,45)(30,46,38)(31,39,47)(32,48,40), (1,36,7,42,13,48,19,30)(2,25,8,31,14,37,20,43)(3,38,9,44,15,26,21,32)(4,27,10,33,16,39,22,45)(5,40,11,46,17,28,23,34)(6,29,12,35,18,41,24,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15,13,3)(2,8,14,20)(4,18,16,6)(5,11,17,23)(7,21,19,9)(10,24,22,12)(25,43,37,31)(26,36,38,48)(27,29,39,41)(28,46,40,34)(30,32,42,44)(33,35,45,47) );

G=PermutationGroup([(1,9,17),(2,18,10),(3,11,19),(4,20,12),(5,13,21),(6,22,14),(7,15,23),(8,24,16),(25,33,41),(26,42,34),(27,35,43),(28,44,36),(29,37,45),(30,46,38),(31,39,47),(32,48,40)], [(1,36,7,42,13,48,19,30),(2,25,8,31,14,37,20,43),(3,38,9,44,15,26,21,32),(4,27,10,33,16,39,22,45),(5,40,11,46,17,28,23,34),(6,29,12,35,18,41,24,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,15,13,3),(2,8,14,20),(4,18,16,6),(5,11,17,23),(7,21,19,9),(10,24,22,12),(25,43,37,31),(26,36,38,48),(27,29,39,41),(28,46,40,34),(30,32,42,44),(33,35,45,47)])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G6H8A8B8C8D8E···8J12A···12F12G···12K24A···24H24I24J24K24L
order12222333444446666666688888···812···1212···1224···2424242424
size112181822411218182222444433336···62···24···46···612121212

54 irreducible representations

dim11111111122222222444444
type++++++++++++++
imageC1C2C2C2C2C2C4C4C4S3S3D6D6C4×S3C4×S3C8○D4C8○D12S32C6.D6C2×S32C6.D6D12.C4C3⋊C8.22D6
kernelC3⋊C8.22D6C12.29D6C12.31D6C6×C3⋊C8C3×C4.Dic3C12.59D6C324Q8C12⋊S3C327D4C2×C3⋊C8C4.Dic3C3⋊C8C2×C12C12C2×C6C32C3C2×C4C4C4C22C3C1
# reps12211122411424448111124

Matrix representation of C3⋊C8.22D6 in GL6(𝔽73)

100000
010000
001000
000100
0000721
0000720
,
4600000
0460000
0005100
0022000
00004627
0000027
,
0460000
27270000
0022000
0005100
00002746
0000046
,
0720000
7200000
0027000
0004600
0000721
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,22,0,0,0,0,51,0,0,0,0,0,0,0,46,0,0,0,0,0,27,27],[0,27,0,0,0,0,46,27,0,0,0,0,0,0,22,0,0,0,0,0,0,51,0,0,0,0,0,0,27,0,0,0,0,0,46,46],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,27,0,0,0,0,0,0,46,0,0,0,0,0,0,72,0,0,0,0,0,1,1] >;

C3⋊C8.22D6 in GAP, Magma, Sage, TeX

C_3\rtimes C_8._{22}D_6
% in TeX

G:=Group("C3:C8.22D6");
// GroupNames label

G:=SmallGroup(288,465);
// by ID

G=gap.SmallGroup(288,465);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,64,219,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=1,c^6=b^2,d^2=b^4,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^5,d*c*d^-1=b^4*c^5>;
// generators/relations

׿
×
𝔽