extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C2×Dic3) = D4⋊Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 144 | | C12.1(C2xDic3) | 288,40 |
C12.2(C2×Dic3) = Q8⋊2Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 288 | | C12.2(C2xDic3) | 288,43 |
C12.3(C2×Dic3) = Q8⋊3Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 72 | 4 | C12.3(C2xDic3) | 288,44 |
C12.4(C2×Dic3) = D4×Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 144 | | C12.4(C2xDic3) | 288,144 |
C12.5(C2×Dic3) = Q8×Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 288 | | C12.5(C2xDic3) | 288,155 |
C12.6(C2×Dic3) = D4.Dic9 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 144 | 4 | C12.6(C2xDic3) | 288,158 |
C12.7(C2×Dic3) = D12⋊3Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 96 | | C12.7(C2xDic3) | 288,210 |
C12.8(C2×Dic3) = Dic6⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 96 | | C12.8(C2xDic3) | 288,213 |
C12.9(C2×Dic3) = D12⋊4Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 24 | 4 | C12.9(C2xDic3) | 288,216 |
C12.10(C2×Dic3) = C12.Dic6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 96 | | C12.10(C2xDic3) | 288,221 |
C12.11(C2×Dic3) = C6.18D24 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 96 | | C12.11(C2xDic3) | 288,223 |
C12.12(C2×Dic3) = C12.82D12 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.12(C2xDic3) | 288,225 |
C12.13(C2×Dic3) = C62.116D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 144 | | C12.13(C2xDic3) | 288,307 |
C12.14(C2×Dic3) = C62.117D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 288 | | C12.14(C2xDic3) | 288,310 |
C12.15(C2×Dic3) = C62.39D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 72 | | C12.15(C2xDic3) | 288,312 |
C12.16(C2×Dic3) = S3×C4.Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.16(C2xDic3) | 288,461 |
C12.17(C2×Dic3) = D12.Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.17(C2xDic3) | 288,463 |
C12.18(C2×Dic3) = C62.11C23 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 96 | | C12.18(C2xDic3) | 288,489 |
C12.19(C2×Dic3) = C62.13C23 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 96 | | C12.19(C2xDic3) | 288,491 |
C12.20(C2×Dic3) = Q8×C3⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 288 | | C12.20(C2xDic3) | 288,802 |
C12.21(C2×Dic3) = D4.(C3⋊Dic3) | φ: C2×Dic3/C6 → C22 ⊆ Aut C12 | 144 | | C12.21(C2xDic3) | 288,805 |
C12.22(C2×Dic3) = C6.16D24 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.22(C2xDic3) | 288,211 |
C12.23(C2×Dic3) = C6.Dic12 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.23(C2xDic3) | 288,214 |
C12.24(C2×Dic3) = D12⋊2Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.24(C2xDic3) | 288,217 |
C12.25(C2×Dic3) = D12.2Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.25(C2xDic3) | 288,462 |
C12.26(C2×Dic3) = Dic3×Dic6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.26(C2xDic3) | 288,490 |
C12.27(C2×Dic3) = S3×C3⋊C16 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | 4 | C12.27(C2xDic3) | 288,189 |
C12.28(C2×Dic3) = C24.61D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | 4 | C12.28(C2xDic3) | 288,191 |
C12.29(C2×Dic3) = Dic3×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.29(C2xDic3) | 288,200 |
C12.30(C2×Dic3) = C6.(S3×C8) | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.30(C2xDic3) | 288,201 |
C12.31(C2×Dic3) = C3⋊C8⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.31(C2xDic3) | 288,202 |
C12.32(C2×Dic3) = C2.Dic32 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.32(C2xDic3) | 288,203 |
C12.33(C2×Dic3) = C2×S3×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.33(C2xDic3) | 288,460 |
C12.34(C2×Dic3) = C2×D6.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.34(C2xDic3) | 288,467 |
C12.35(C2×Dic3) = C62.25C23 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.35(C2xDic3) | 288,503 |
C12.36(C2×Dic3) = C3×D4⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.36(C2xDic3) | 288,266 |
C12.37(C2×Dic3) = C3×Q8⋊2Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.37(C2xDic3) | 288,269 |
C12.38(C2×Dic3) = C3×Q8⋊3Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.38(C2xDic3) | 288,271 |
C12.39(C2×Dic3) = C3×Q8×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.39(C2xDic3) | 288,716 |
C12.40(C2×Dic3) = C3×D4.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.40(C2xDic3) | 288,719 |
C12.41(C2×Dic3) = C72.C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | 2 | C12.41(C2xDic3) | 288,20 |
C12.42(C2×Dic3) = C8⋊Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.42(C2xDic3) | 288,25 |
C12.43(C2×Dic3) = C72⋊1C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.43(C2xDic3) | 288,26 |
C12.44(C2×Dic3) = C2×C4⋊Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.44(C2xDic3) | 288,135 |
C12.45(C2×Dic3) = C23.26D18 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.45(C2xDic3) | 288,136 |
C12.46(C2×Dic3) = C24⋊2Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.46(C2xDic3) | 288,292 |
C12.47(C2×Dic3) = C24⋊1Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.47(C2xDic3) | 288,293 |
C12.48(C2×Dic3) = C12.59D12 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.48(C2xDic3) | 288,294 |
C12.49(C2×Dic3) = C2×C9⋊C16 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.49(C2xDic3) | 288,18 |
C12.50(C2×Dic3) = C36.C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | 2 | C12.50(C2xDic3) | 288,19 |
C12.51(C2×Dic3) = C8×Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.51(C2xDic3) | 288,21 |
C12.52(C2×Dic3) = C72⋊C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.52(C2xDic3) | 288,23 |
C12.53(C2×Dic3) = C22×C9⋊C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.53(C2xDic3) | 288,130 |
C12.54(C2×Dic3) = C2×C4.Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.54(C2xDic3) | 288,131 |
C12.55(C2×Dic3) = C2×C4×Dic9 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.55(C2xDic3) | 288,132 |
C12.56(C2×Dic3) = C2×C24.S3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.56(C2xDic3) | 288,286 |
C12.57(C2×Dic3) = C24.94D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.57(C2xDic3) | 288,287 |
C12.58(C2×Dic3) = C8×C3⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.58(C2xDic3) | 288,288 |
C12.59(C2×Dic3) = C24⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.59(C2xDic3) | 288,290 |
C12.60(C2×Dic3) = C22×C32⋊4C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.60(C2xDic3) | 288,777 |
C12.61(C2×Dic3) = C2×C12.58D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.61(C2xDic3) | 288,778 |
C12.62(C2×Dic3) = C62.247C23 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.62(C2xDic3) | 288,783 |
C12.63(C2×Dic3) = C3×C8⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.63(C2xDic3) | 288,251 |
C12.64(C2×Dic3) = C3×C24⋊1C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.64(C2xDic3) | 288,252 |
C12.65(C2×Dic3) = C3×C24.C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.65(C2xDic3) | 288,253 |
C12.66(C2×Dic3) = C6×C3⋊C16 | central extension (φ=1) | 96 | | C12.66(C2xDic3) | 288,245 |
C12.67(C2×Dic3) = C3×C12.C8 | central extension (φ=1) | 48 | 2 | C12.67(C2xDic3) | 288,246 |
C12.68(C2×Dic3) = Dic3×C24 | central extension (φ=1) | 96 | | C12.68(C2xDic3) | 288,247 |
C12.69(C2×Dic3) = C3×C24⋊C4 | central extension (φ=1) | 96 | | C12.69(C2xDic3) | 288,249 |
C12.70(C2×Dic3) = C2×C6×C3⋊C8 | central extension (φ=1) | 96 | | C12.70(C2xDic3) | 288,691 |
C12.71(C2×Dic3) = C6×C4.Dic3 | central extension (φ=1) | 48 | | C12.71(C2xDic3) | 288,692 |
C12.72(C2×Dic3) = C3×C23.26D6 | central extension (φ=1) | 48 | | C12.72(C2xDic3) | 288,697 |