Extensions 1→N→G→Q→1 with N=C12 and Q=C2×Dic3

Direct product G=N×Q with N=C12 and Q=C2×Dic3
dρLabelID
Dic3×C2×C1296Dic3xC2xC12288,693

Semidirect products G=N:Q with N=C12 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C121(C2×Dic3) = S3×C4⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C1296C12:1(C2xDic3)288,537
C122(C2×Dic3) = D12⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C1296C12:2(C2xDic3)288,546
C123(C2×Dic3) = D4×C3⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C12144C12:3(C2xDic3)288,791
C124(C2×Dic3) = Dic3×D12φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12:4(C2xDic3)288,540
C125(C2×Dic3) = C4×S3×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12:5(C2xDic3)288,523
C126(C2×Dic3) = C3×D4×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C1248C12:6(C2xDic3)288,705
C127(C2×Dic3) = C2×C12⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12:7(C2xDic3)288,782
C128(C2×Dic3) = C2×C4×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12:8(C2xDic3)288,779
C129(C2×Dic3) = C6×C4⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C1296C12:9(C2xDic3)288,696

Non-split extensions G=N.Q with N=C12 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C12.1(C2×Dic3) = D4⋊Dic9φ: C2×Dic3/C6C22 ⊆ Aut C12144C12.1(C2xDic3)288,40
C12.2(C2×Dic3) = Q82Dic9φ: C2×Dic3/C6C22 ⊆ Aut C12288C12.2(C2xDic3)288,43
C12.3(C2×Dic3) = Q83Dic9φ: C2×Dic3/C6C22 ⊆ Aut C12724C12.3(C2xDic3)288,44
C12.4(C2×Dic3) = D4×Dic9φ: C2×Dic3/C6C22 ⊆ Aut C12144C12.4(C2xDic3)288,144
C12.5(C2×Dic3) = Q8×Dic9φ: C2×Dic3/C6C22 ⊆ Aut C12288C12.5(C2xDic3)288,155
C12.6(C2×Dic3) = D4.Dic9φ: C2×Dic3/C6C22 ⊆ Aut C121444C12.6(C2xDic3)288,158
C12.7(C2×Dic3) = D123Dic3φ: C2×Dic3/C6C22 ⊆ Aut C1296C12.7(C2xDic3)288,210
C12.8(C2×Dic3) = Dic6⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C1296C12.8(C2xDic3)288,213
C12.9(C2×Dic3) = D124Dic3φ: C2×Dic3/C6C22 ⊆ Aut C12244C12.9(C2xDic3)288,216
C12.10(C2×Dic3) = C12.Dic6φ: C2×Dic3/C6C22 ⊆ Aut C1296C12.10(C2xDic3)288,221
C12.11(C2×Dic3) = C6.18D24φ: C2×Dic3/C6C22 ⊆ Aut C1296C12.11(C2xDic3)288,223
C12.12(C2×Dic3) = C12.82D12φ: C2×Dic3/C6C22 ⊆ Aut C12484C12.12(C2xDic3)288,225
C12.13(C2×Dic3) = C62.116D4φ: C2×Dic3/C6C22 ⊆ Aut C12144C12.13(C2xDic3)288,307
C12.14(C2×Dic3) = C62.117D4φ: C2×Dic3/C6C22 ⊆ Aut C12288C12.14(C2xDic3)288,310
C12.15(C2×Dic3) = C62.39D4φ: C2×Dic3/C6C22 ⊆ Aut C1272C12.15(C2xDic3)288,312
C12.16(C2×Dic3) = S3×C4.Dic3φ: C2×Dic3/C6C22 ⊆ Aut C12484C12.16(C2xDic3)288,461
C12.17(C2×Dic3) = D12.Dic3φ: C2×Dic3/C6C22 ⊆ Aut C12484C12.17(C2xDic3)288,463
C12.18(C2×Dic3) = C62.11C23φ: C2×Dic3/C6C22 ⊆ Aut C1296C12.18(C2xDic3)288,489
C12.19(C2×Dic3) = C62.13C23φ: C2×Dic3/C6C22 ⊆ Aut C1296C12.19(C2xDic3)288,491
C12.20(C2×Dic3) = Q8×C3⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C12288C12.20(C2xDic3)288,802
C12.21(C2×Dic3) = D4.(C3⋊Dic3)φ: C2×Dic3/C6C22 ⊆ Aut C12144C12.21(C2xDic3)288,805
C12.22(C2×Dic3) = C6.16D24φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.22(C2xDic3)288,211
C12.23(C2×Dic3) = C6.Dic12φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.23(C2xDic3)288,214
C12.24(C2×Dic3) = D122Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C12484C12.24(C2xDic3)288,217
C12.25(C2×Dic3) = D12.2Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C12484C12.25(C2xDic3)288,462
C12.26(C2×Dic3) = Dic3×Dic6φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.26(C2xDic3)288,490
C12.27(C2×Dic3) = S3×C3⋊C16φ: C2×Dic3/Dic3C2 ⊆ Aut C12964C12.27(C2xDic3)288,189
C12.28(C2×Dic3) = C24.61D6φ: C2×Dic3/Dic3C2 ⊆ Aut C12964C12.28(C2xDic3)288,191
C12.29(C2×Dic3) = Dic3×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.29(C2xDic3)288,200
C12.30(C2×Dic3) = C6.(S3×C8)φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.30(C2xDic3)288,201
C12.31(C2×Dic3) = C3⋊C8⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.31(C2xDic3)288,202
C12.32(C2×Dic3) = C2.Dic32φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.32(C2xDic3)288,203
C12.33(C2×Dic3) = C2×S3×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.33(C2xDic3)288,460
C12.34(C2×Dic3) = C2×D6.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.34(C2xDic3)288,467
C12.35(C2×Dic3) = C62.25C23φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.35(C2xDic3)288,503
C12.36(C2×Dic3) = C3×D4⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C1248C12.36(C2xDic3)288,266
C12.37(C2×Dic3) = C3×Q82Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.37(C2xDic3)288,269
C12.38(C2×Dic3) = C3×Q83Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C12484C12.38(C2xDic3)288,271
C12.39(C2×Dic3) = C3×Q8×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C1296C12.39(C2xDic3)288,716
C12.40(C2×Dic3) = C3×D4.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C12484C12.40(C2xDic3)288,719
C12.41(C2×Dic3) = C72.C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C121442C12.41(C2xDic3)288,20
C12.42(C2×Dic3) = C8⋊Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.42(C2xDic3)288,25
C12.43(C2×Dic3) = C721C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.43(C2xDic3)288,26
C12.44(C2×Dic3) = C2×C4⋊Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.44(C2xDic3)288,135
C12.45(C2×Dic3) = C23.26D18φ: C2×Dic3/C2×C6C2 ⊆ Aut C12144C12.45(C2xDic3)288,136
C12.46(C2×Dic3) = C242Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.46(C2xDic3)288,292
C12.47(C2×Dic3) = C241Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.47(C2xDic3)288,293
C12.48(C2×Dic3) = C12.59D12φ: C2×Dic3/C2×C6C2 ⊆ Aut C12144C12.48(C2xDic3)288,294
C12.49(C2×Dic3) = C2×C9⋊C16φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.49(C2xDic3)288,18
C12.50(C2×Dic3) = C36.C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C121442C12.50(C2xDic3)288,19
C12.51(C2×Dic3) = C8×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.51(C2xDic3)288,21
C12.52(C2×Dic3) = C72⋊C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.52(C2xDic3)288,23
C12.53(C2×Dic3) = C22×C9⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.53(C2xDic3)288,130
C12.54(C2×Dic3) = C2×C4.Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C12144C12.54(C2xDic3)288,131
C12.55(C2×Dic3) = C2×C4×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.55(C2xDic3)288,132
C12.56(C2×Dic3) = C2×C24.S3φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.56(C2xDic3)288,286
C12.57(C2×Dic3) = C24.94D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C12144C12.57(C2xDic3)288,287
C12.58(C2×Dic3) = C8×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.58(C2xDic3)288,288
C12.59(C2×Dic3) = C24⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.59(C2xDic3)288,290
C12.60(C2×Dic3) = C22×C324C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C12288C12.60(C2xDic3)288,777
C12.61(C2×Dic3) = C2×C12.58D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C12144C12.61(C2xDic3)288,778
C12.62(C2×Dic3) = C62.247C23φ: C2×Dic3/C2×C6C2 ⊆ Aut C12144C12.62(C2xDic3)288,783
C12.63(C2×Dic3) = C3×C8⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C1296C12.63(C2xDic3)288,251
C12.64(C2×Dic3) = C3×C241C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C1296C12.64(C2xDic3)288,252
C12.65(C2×Dic3) = C3×C24.C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C12482C12.65(C2xDic3)288,253
C12.66(C2×Dic3) = C6×C3⋊C16central extension (φ=1)96C12.66(C2xDic3)288,245
C12.67(C2×Dic3) = C3×C12.C8central extension (φ=1)482C12.67(C2xDic3)288,246
C12.68(C2×Dic3) = Dic3×C24central extension (φ=1)96C12.68(C2xDic3)288,247
C12.69(C2×Dic3) = C3×C24⋊C4central extension (φ=1)96C12.69(C2xDic3)288,249
C12.70(C2×Dic3) = C2×C6×C3⋊C8central extension (φ=1)96C12.70(C2xDic3)288,691
C12.71(C2×Dic3) = C6×C4.Dic3central extension (φ=1)48C12.71(C2xDic3)288,692
C12.72(C2×Dic3) = C3×C23.26D6central extension (φ=1)48C12.72(C2xDic3)288,697

׿
×
𝔽