Extensions 1→N→G→Q→1 with N=C18 and Q=D8

Direct product G=N×Q with N=C18 and Q=D8
dρLabelID
D8×C18144D8xC18288,182

Semidirect products G=N:Q with N=C18 and Q=D8
extensionφ:Q→Aut NdρLabelID
C181D8 = C2×D72φ: D8/C8C2 ⊆ Aut C18144C18:1D8288,114
C182D8 = C2×D4⋊D9φ: D8/D4C2 ⊆ Aut C18144C18:2D8288,142

Non-split extensions G=N.Q with N=C18 and Q=D8
extensionφ:Q→Aut NdρLabelID
C18.1D8 = D144φ: D8/C8C2 ⊆ Aut C181442+C18.1D8288,6
C18.2D8 = C144⋊C2φ: D8/C8C2 ⊆ Aut C181442C18.2D8288,7
C18.3D8 = Dic72φ: D8/C8C2 ⊆ Aut C182882-C18.3D8288,8
C18.4D8 = C721C4φ: D8/C8C2 ⊆ Aut C18288C18.4D8288,26
C18.5D8 = C2.D72φ: D8/C8C2 ⊆ Aut C18144C18.5D8288,28
C18.6D8 = C36.Q8φ: D8/D4C2 ⊆ Aut C18288C18.6D8288,14
C18.7D8 = C18.D8φ: D8/D4C2 ⊆ Aut C18144C18.7D8288,17
C18.8D8 = C9⋊D16φ: D8/D4C2 ⊆ Aut C181444+C18.8D8288,33
C18.9D8 = D8.D9φ: D8/D4C2 ⊆ Aut C181444-C18.9D8288,34
C18.10D8 = C9⋊SD32φ: D8/D4C2 ⊆ Aut C181444+C18.10D8288,35
C18.11D8 = C9⋊Q32φ: D8/D4C2 ⊆ Aut C182884-C18.11D8288,36
C18.12D8 = D4⋊Dic9φ: D8/D4C2 ⊆ Aut C18144C18.12D8288,40
C18.13D8 = C9×D4⋊C4central extension (φ=1)144C18.13D8288,52
C18.14D8 = C9×C2.D8central extension (φ=1)288C18.14D8288,57
C18.15D8 = C9×D16central extension (φ=1)1442C18.15D8288,61
C18.16D8 = C9×SD32central extension (φ=1)1442C18.16D8288,62
C18.17D8 = C9×Q32central extension (φ=1)2882C18.17D8288,63

׿
×
𝔽