Copied to
clipboard

G = C5xDic15order 300 = 22·3·52

Direct product of C5 and Dic15

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C5xDic15, C15:3C20, C30.7D5, C30.1C10, C15:5Dic5, C10.4D15, C52:7Dic3, C6.(C5xD5), C3:(C5xDic5), C10.(C5xS3), C2.(C5xD15), (C5xC15):10C4, (C5xC10).2S3, (C5xC30).2C2, C5:2(C5xDic3), SmallGroup(300,19)

Series: Derived Chief Lower central Upper central

C1C15 — C5xDic15
C1C5C15C30C5xC30 — C5xDic15
C15 — C5xDic15
C1C10

Generators and relations for C5xDic15
 G = < a,b,c | a5=b30=1, c2=b15, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 80 in 32 conjugacy classes, 18 normal (all characteristic)
Quotients: C1, C2, C4, C5, S3, D5, C10, Dic3, Dic5, C20, C5xS3, D15, C5xD5, C5xDic3, Dic15, C5xDic5, C5xD15, C5xDic15
2C5
2C5
15C4
2C10
2C10
2C15
2C15
5Dic3
3Dic5
15C20
2C30
2C30
5C5xDic3
3C5xDic5

Smallest permutation representation of C5xDic15
On 60 points
Generators in S60
(1 25 19 13 7)(2 26 20 14 8)(3 27 21 15 9)(4 28 22 16 10)(5 29 23 17 11)(6 30 24 18 12)(31 37 43 49 55)(32 38 44 50 56)(33 39 45 51 57)(34 40 46 52 58)(35 41 47 53 59)(36 42 48 54 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 36 16 51)(2 35 17 50)(3 34 18 49)(4 33 19 48)(5 32 20 47)(6 31 21 46)(7 60 22 45)(8 59 23 44)(9 58 24 43)(10 57 25 42)(11 56 26 41)(12 55 27 40)(13 54 28 39)(14 53 29 38)(15 52 30 37)

G:=sub<Sym(60)| (1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,37,43,49,55)(32,38,44,50,56)(33,39,45,51,57)(34,40,46,52,58)(35,41,47,53,59)(36,42,48,54,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,36,16,51)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,31,21,46)(7,60,22,45)(8,59,23,44)(9,58,24,43)(10,57,25,42)(11,56,26,41)(12,55,27,40)(13,54,28,39)(14,53,29,38)(15,52,30,37)>;

G:=Group( (1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,37,43,49,55)(32,38,44,50,56)(33,39,45,51,57)(34,40,46,52,58)(35,41,47,53,59)(36,42,48,54,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,36,16,51)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,31,21,46)(7,60,22,45)(8,59,23,44)(9,58,24,43)(10,57,25,42)(11,56,26,41)(12,55,27,40)(13,54,28,39)(14,53,29,38)(15,52,30,37) );

G=PermutationGroup([[(1,25,19,13,7),(2,26,20,14,8),(3,27,21,15,9),(4,28,22,16,10),(5,29,23,17,11),(6,30,24,18,12),(31,37,43,49,55),(32,38,44,50,56),(33,39,45,51,57),(34,40,46,52,58),(35,41,47,53,59),(36,42,48,54,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,36,16,51),(2,35,17,50),(3,34,18,49),(4,33,19,48),(5,32,20,47),(6,31,21,46),(7,60,22,45),(8,59,23,44),(9,58,24,43),(10,57,25,42),(11,56,26,41),(12,55,27,40),(13,54,28,39),(14,53,29,38),(15,52,30,37)]])

90 conjugacy classes

class 1  2  3 4A4B5A5B5C5D5E···5N 6 10A10B10C10D10E···10N15A···15X20A···20H30A···30X
order1234455555···561010101010···1015···1520···2030···30
size112151511112···2211112···22···215···152···2

90 irreducible representations

dim111111222222222222
type++++--+-
imageC1C2C4C5C10C20S3D5Dic3Dic5C5xS3D15C5xD5C5xDic3Dic15C5xDic5C5xD15C5xDic15
kernelC5xDic15C5xC30C5xC15Dic15C30C15C5xC10C30C52C15C10C10C6C5C5C3C2C1
# reps11244812124484481616

Matrix representation of C5xDic15 in GL2(F31) generated by

20
02
,
170
011
,
030
10
G:=sub<GL(2,GF(31))| [2,0,0,2],[17,0,0,11],[0,1,30,0] >;

C5xDic15 in GAP, Magma, Sage, TeX

C_5\times {\rm Dic}_{15}
% in TeX

G:=Group("C5xDic15");
// GroupNames label

G:=SmallGroup(300,19);
// by ID

G=gap.SmallGroup(300,19);
# by ID

G:=PCGroup([5,-2,-5,-2,-3,-5,50,803,6004]);
// Polycyclic

G:=Group<a,b,c|a^5=b^30=1,c^2=b^15,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C5xDic15 in TeX

׿
x
:
Z
F
o
wr
Q
<