Copied to
clipboard

G = C5×S3×D5order 300 = 22·3·52

Direct product of C5, S3 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C5×S3×D5, D15⋊C10, C525D6, C155D10, (C5×S3)⋊C10, C15⋊(C2×C10), (C3×D5)⋊C10, C31(D5×C10), C51(S3×C10), (C5×D15)⋊1C2, (D5×C15)⋊3C2, (C5×C15)⋊1C22, (S3×C52)⋊1C2, SmallGroup(300,37)

Series: Derived Chief Lower central Upper central

C1C15 — C5×S3×D5
C1C5C15C5×C15D5×C15 — C5×S3×D5
C15 — C5×S3×D5
C1C5

Generators and relations for C5×S3×D5
 G = < a,b,c,d,e | a5=b3=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
5C2
15C2
2C5
2C5
15C22
5S3
5C6
3D5
3C10
3C10
5C10
6C10
6C10
15C10
2C15
2C15
5D6
3D10
15C2×C10
2C5×S3
2C5×S3
5C5×S3
5C30
3C5×D5
3C5×C10
5S3×C10
3D5×C10

Permutation representations of C5×S3×D5
On 30 points - transitive group 30T75
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 5 4 3 2)(6 10 9 8 7)(11 15 14 13 12)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 20)(2 16)(3 17)(4 18)(5 19)(6 25)(7 21)(8 22)(9 23)(10 24)(11 30)(12 26)(13 27)(14 28)(15 29)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30), (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,20)(2,16)(3,17)(4,18)(5,19)(6,25)(7,21)(8,22)(9,23)(10,24)(11,30)(12,26)(13,27)(14,28)(15,29)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30), (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,20)(2,16)(3,17)(4,18)(5,19)(6,25)(7,21)(8,22)(9,23)(10,24)(11,30)(12,26)(13,27)(14,28)(15,29) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,5,4,3,2),(6,10,9,8,7),(11,15,14,13,12),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,20),(2,16),(3,17),(4,18),(5,19),(6,25),(7,21),(8,22),(9,23),(10,24),(11,30),(12,26),(13,27),(14,28),(15,29)]])

G:=TransitiveGroup(30,75);

60 conjugacy classes

class 1 2A2B2C 3 5A5B5C5D5E···5N 6 10A10B10C10D10E10F10G10H10I···10R10S10T10U10V15A15B15C15D15E···15N30A30B30C30D
order1222355555···56101010101010101010···10101010101515151515···1530303030
size13515211112···210333355556···61515151522224···410101010

60 irreducible representations

dim111111112222222244
type+++++++++
imageC1C2C2C2C5C10C10C10S3D5D6D10C5×S3C5×D5S3×C10D5×C10S3×D5C5×S3×D5
kernelC5×S3×D5D5×C15S3×C52C5×D15S3×D5C5×S3C3×D5D15C5×D5C5×S3C52C15D5S3C5C3C5C1
# reps111144441212484828

Matrix representation of C5×S3×D5 in GL4(𝔽31) generated by

2000
0200
0040
0004
,
1000
0100
00030
00130
,
1000
0100
00130
00030
,
4000
0800
0010
0001
,
0800
4000
00300
00030
G:=sub<GL(4,GF(31))| [2,0,0,0,0,2,0,0,0,0,4,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,30,30],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,30,30],[4,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[0,4,0,0,8,0,0,0,0,0,30,0,0,0,0,30] >;

C5×S3×D5 in GAP, Magma, Sage, TeX

C_5\times S_3\times D_5
% in TeX

G:=Group("C5xS3xD5");
// GroupNames label

G:=SmallGroup(300,37);
// by ID

G=gap.SmallGroup(300,37);
# by ID

G:=PCGroup([5,-2,-2,-5,-3,-5,408,6004]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^3=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C5×S3×D5 in TeX

׿
×
𝔽