Copied to
clipboard

G = D5xC30order 300 = 22·3·52

Direct product of C30 and D5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D5xC30, C10:C30, C30:2C10, C5:(C2xC30), (C5xC10):3C6, (C5xC30):3C2, C52:4(C2xC6), C15:3(C2xC10), (C5xC15):8C22, SmallGroup(300,44)

Series: Derived Chief Lower central Upper central

C1C5 — D5xC30
C1C5C52C5xC15D5xC15 — D5xC30
C5 — D5xC30
C1C30

Generators and relations for D5xC30
 G = < a,b,c | a30=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 104 in 48 conjugacy classes, 28 normal (20 characteristic)
Quotients: C1, C2, C3, C22, C5, C6, D5, C10, C2xC6, C15, D10, C2xC10, C3xD5, C30, C5xD5, C6xD5, C2xC30, D5xC10, D5xC15, D5xC30
5C2
5C2
2C5
2C5
5C22
5C6
5C6
2C10
2C10
5C10
5C10
2C15
2C15
5C2xC6
5C2xC10
2C30
2C30
5C30
5C30
5C2xC30

Smallest permutation representation of D5xC30
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 25 19 13 7)(2 26 20 14 8)(3 27 21 15 9)(4 28 22 16 10)(5 29 23 17 11)(6 30 24 18 12)(31 37 43 49 55)(32 38 44 50 56)(33 39 45 51 57)(34 40 46 52 58)(35 41 47 53 59)(36 42 48 54 60)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 39)(26 40)(27 41)(28 42)(29 43)(30 44)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,37,43,49,55)(32,38,44,50,56)(33,39,45,51,57)(34,40,46,52,58)(35,41,47,53,59)(36,42,48,54,60), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10)(5,29,23,17,11)(6,30,24,18,12)(31,37,43,49,55)(32,38,44,50,56)(33,39,45,51,57)(34,40,46,52,58)(35,41,47,53,59)(36,42,48,54,60), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,25,19,13,7),(2,26,20,14,8),(3,27,21,15,9),(4,28,22,16,10),(5,29,23,17,11),(6,30,24,18,12),(31,37,43,49,55),(32,38,44,50,56),(33,39,45,51,57),(34,40,46,52,58),(35,41,47,53,59),(36,42,48,54,60)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,39),(26,40),(27,41),(28,42),(29,43),(30,44)]])

120 conjugacy classes

class 1 2A2B2C3A3B5A5B5C5D5E···5N6A6B6C6D6E6F10A10B10C10D10E···10N10O···10V15A···15H15I···15AB30A···30H30I···30AB30AC···30AR
order12223355555···56666661010101010···1010···1015···1515···1530···3030···3030···30
size11551111112···211555511112···25···51···12···21···12···25···5

120 irreducible representations

dim11111111111122222222
type+++++
imageC1C2C2C3C5C6C6C10C10C15C30C30D5D10C3xD5C5xD5C6xD5D5xC10D5xC15D5xC30
kernelD5xC30D5xC15C5xC30D5xC10C6xD5C5xD5C5xC10C3xD5C30D10D5C10C30C15C10C6C5C3C2C1
# reps12124428481682248481616

Matrix representation of D5xC30 in GL2(F31) generated by

120
012
,
1930
2030
,
300
111
G:=sub<GL(2,GF(31))| [12,0,0,12],[19,20,30,30],[30,11,0,1] >;

D5xC30 in GAP, Magma, Sage, TeX

D_5\times C_{30}
% in TeX

G:=Group("D5xC30");
// GroupNames label

G:=SmallGroup(300,44);
// by ID

G=gap.SmallGroup(300,44);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-5,6004]);
// Polycyclic

G:=Group<a,b,c|a^30=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5xC30 in TeX

׿
x
:
Z
F
o
wr
Q
<