direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C10×C4.D4, C24.2C20, (C2×D4).6C20, C4.48(D4×C10), (D4×C10).31C4, (C2×C20).515D4, C20.455(C2×D4), (C23×C10).2C4, C23.4(C2×C20), M4(2)⋊8(C2×C10), (C2×M4(2))⋊8C10, (C22×D4).5C10, (C10×M4(2))⋊26C2, (C2×C20).606C23, C22.8(C22×C20), C20.125(C22⋊C4), (D4×C10).284C22, (C5×M4(2))⋊37C22, (C22×C20).407C22, (D4×C2×C10).17C2, (C2×C4).21(C5×D4), (C2×C4).19(C2×C20), C4.10(C5×C22⋊C4), (C2×C20).365(C2×C4), (C2×D4).42(C2×C10), C2.14(C10×C22⋊C4), (C2×C4).1(C22×C10), C10.143(C2×C22⋊C4), (C22×C10).36(C2×C4), (C22×C4).26(C2×C10), C22.18(C5×C22⋊C4), (C2×C10).262(C22×C4), (C2×C10).200(C22⋊C4), SmallGroup(320,912)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10×C4.D4
G = < a,b,c,d | a10=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >
Subgroups: 370 in 186 conjugacy classes, 82 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×D4, C24, C20, C2×C10, C2×C10, C4.D4, C2×M4(2), C22×D4, C40, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C4.D4, C2×C40, C5×M4(2), C5×M4(2), C22×C20, D4×C10, D4×C10, C23×C10, C5×C4.D4, C10×M4(2), D4×C2×C10, C10×C4.D4
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C22⋊C4, C22×C4, C2×D4, C20, C2×C10, C4.D4, C2×C22⋊C4, C2×C20, C5×D4, C22×C10, C2×C4.D4, C5×C22⋊C4, C22×C20, D4×C10, C5×C4.D4, C10×C22⋊C4, C10×C4.D4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 56 70 50)(2 57 61 41)(3 58 62 42)(4 59 63 43)(5 60 64 44)(6 51 65 45)(7 52 66 46)(8 53 67 47)(9 54 68 48)(10 55 69 49)(11 80 29 33)(12 71 30 34)(13 72 21 35)(14 73 22 36)(15 74 23 37)(16 75 24 38)(17 76 25 39)(18 77 26 40)(19 78 27 31)(20 79 28 32)
(1 74 56 15 70 37 50 23)(2 75 57 16 61 38 41 24)(3 76 58 17 62 39 42 25)(4 77 59 18 63 40 43 26)(5 78 60 19 64 31 44 27)(6 79 51 20 65 32 45 28)(7 80 52 11 66 33 46 29)(8 71 53 12 67 34 47 30)(9 72 54 13 68 35 48 21)(10 73 55 14 69 36 49 22)
(1 28 56 32 70 20 50 79)(2 29 57 33 61 11 41 80)(3 30 58 34 62 12 42 71)(4 21 59 35 63 13 43 72)(5 22 60 36 64 14 44 73)(6 23 51 37 65 15 45 74)(7 24 52 38 66 16 46 75)(8 25 53 39 67 17 47 76)(9 26 54 40 68 18 48 77)(10 27 55 31 69 19 49 78)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,56,70,50)(2,57,61,41)(3,58,62,42)(4,59,63,43)(5,60,64,44)(6,51,65,45)(7,52,66,46)(8,53,67,47)(9,54,68,48)(10,55,69,49)(11,80,29,33)(12,71,30,34)(13,72,21,35)(14,73,22,36)(15,74,23,37)(16,75,24,38)(17,76,25,39)(18,77,26,40)(19,78,27,31)(20,79,28,32), (1,74,56,15,70,37,50,23)(2,75,57,16,61,38,41,24)(3,76,58,17,62,39,42,25)(4,77,59,18,63,40,43,26)(5,78,60,19,64,31,44,27)(6,79,51,20,65,32,45,28)(7,80,52,11,66,33,46,29)(8,71,53,12,67,34,47,30)(9,72,54,13,68,35,48,21)(10,73,55,14,69,36,49,22), (1,28,56,32,70,20,50,79)(2,29,57,33,61,11,41,80)(3,30,58,34,62,12,42,71)(4,21,59,35,63,13,43,72)(5,22,60,36,64,14,44,73)(6,23,51,37,65,15,45,74)(7,24,52,38,66,16,46,75)(8,25,53,39,67,17,47,76)(9,26,54,40,68,18,48,77)(10,27,55,31,69,19,49,78)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,56,70,50)(2,57,61,41)(3,58,62,42)(4,59,63,43)(5,60,64,44)(6,51,65,45)(7,52,66,46)(8,53,67,47)(9,54,68,48)(10,55,69,49)(11,80,29,33)(12,71,30,34)(13,72,21,35)(14,73,22,36)(15,74,23,37)(16,75,24,38)(17,76,25,39)(18,77,26,40)(19,78,27,31)(20,79,28,32), (1,74,56,15,70,37,50,23)(2,75,57,16,61,38,41,24)(3,76,58,17,62,39,42,25)(4,77,59,18,63,40,43,26)(5,78,60,19,64,31,44,27)(6,79,51,20,65,32,45,28)(7,80,52,11,66,33,46,29)(8,71,53,12,67,34,47,30)(9,72,54,13,68,35,48,21)(10,73,55,14,69,36,49,22), (1,28,56,32,70,20,50,79)(2,29,57,33,61,11,41,80)(3,30,58,34,62,12,42,71)(4,21,59,35,63,13,43,72)(5,22,60,36,64,14,44,73)(6,23,51,37,65,15,45,74)(7,24,52,38,66,16,46,75)(8,25,53,39,67,17,47,76)(9,26,54,40,68,18,48,77)(10,27,55,31,69,19,49,78) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,56,70,50),(2,57,61,41),(3,58,62,42),(4,59,63,43),(5,60,64,44),(6,51,65,45),(7,52,66,46),(8,53,67,47),(9,54,68,48),(10,55,69,49),(11,80,29,33),(12,71,30,34),(13,72,21,35),(14,73,22,36),(15,74,23,37),(16,75,24,38),(17,76,25,39),(18,77,26,40),(19,78,27,31),(20,79,28,32)], [(1,74,56,15,70,37,50,23),(2,75,57,16,61,38,41,24),(3,76,58,17,62,39,42,25),(4,77,59,18,63,40,43,26),(5,78,60,19,64,31,44,27),(6,79,51,20,65,32,45,28),(7,80,52,11,66,33,46,29),(8,71,53,12,67,34,47,30),(9,72,54,13,68,35,48,21),(10,73,55,14,69,36,49,22)], [(1,28,56,32,70,20,50,79),(2,29,57,33,61,11,41,80),(3,30,58,34,62,12,42,71),(4,21,59,35,63,13,43,72),(5,22,60,36,64,14,44,73),(6,23,51,37,65,15,45,74),(7,24,52,38,66,16,46,75),(8,25,53,39,67,17,47,76),(9,26,54,40,68,18,48,77),(10,27,55,31,69,19,49,78)]])
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 8A | ··· | 8H | 10A | ··· | 10L | 10M | ··· | 10T | 10U | ··· | 10AJ | 20A | ··· | 20P | 40A | ··· | 40AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C5 | C10 | C10 | C10 | C20 | C20 | D4 | C5×D4 | C4.D4 | C5×C4.D4 |
kernel | C10×C4.D4 | C5×C4.D4 | C10×M4(2) | D4×C2×C10 | D4×C10 | C23×C10 | C2×C4.D4 | C4.D4 | C2×M4(2) | C22×D4 | C2×D4 | C24 | C2×C20 | C2×C4 | C10 | C2 |
# reps | 1 | 4 | 2 | 1 | 4 | 4 | 4 | 16 | 8 | 4 | 16 | 16 | 4 | 16 | 2 | 8 |
Matrix representation of C10×C4.D4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 0 |
0 | 0 | 0 | 0 | 0 | 10 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,40,0,0,0,0,0,0,40,0,0] >;
C10×C4.D4 in GAP, Magma, Sage, TeX
C_{10}\times C_4.D_4
% in TeX
G:=Group("C10xC4.D4");
// GroupNames label
G:=SmallGroup(320,912);
// by ID
G=gap.SmallGroup(320,912);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,7004,5052,124]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations