extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C10)⋊1C4 = D10.SD16 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | | (D4xC10):1C4 | 320,258 |
(D4×C10)⋊2C4 = (C2×D4)⋊F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | 8+ | (D4xC10):2C4 | 320,260 |
(D4×C10)⋊3C4 = (C2×D4)⋊7F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | 8+ | (D4xC10):3C4 | 320,1108 |
(D4×C10)⋊4C4 = (C2×F5)⋊D4 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | | (D4xC10):4C4 | 320,1117 |
(D4×C10)⋊5C4 = C2×D20⋊C4 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | | (D4xC10):5C4 | 320,1104 |
(D4×C10)⋊6C4 = (D4×C10)⋊C4 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | 8+ | (D4xC10):6C4 | 320,1105 |
(D4×C10)⋊7C4 = C2×D4⋊F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | | (D4xC10):7C4 | 320,1106 |
(D4×C10)⋊8C4 = (C2×D4)⋊6F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | 8- | (D4xC10):8C4 | 320,1107 |
(D4×C10)⋊9C4 = (C2×D4)⋊8F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | 8- | (D4xC10):9C4 | 320,1109 |
(D4×C10)⋊10C4 = C2.(D4×F5) | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | | (D4xC10):10C4 | 320,1118 |
(D4×C10)⋊11C4 = C2×D4×F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | | (D4xC10):11C4 | 320,1595 |
(D4×C10)⋊12C4 = D10.C24 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | 8+ | (D4xC10):12C4 | 320,1596 |
(D4×C10)⋊13C4 = C4⋊C4⋊Dic5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | | (D4xC10):13C4 | 320,95 |
(D4×C10)⋊14C4 = C42⋊3Dic5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | 4 | (D4xC10):14C4 | 320,103 |
(D4×C10)⋊15C4 = C5×C22.SD16 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | | (D4xC10):15C4 | 320,132 |
(D4×C10)⋊16C4 = C5×C42⋊C4 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | 4 | (D4xC10):16C4 | 320,158 |
(D4×C10)⋊17C4 = C2×D4⋊Dic5 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10):17C4 | 320,841 |
(D4×C10)⋊18C4 = (D4×C10)⋊18C4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):18C4 | 320,842 |
(D4×C10)⋊19C4 = C24.19D10 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10):19C4 | 320,848 |
(D4×C10)⋊20C4 = C2×D4⋊2Dic5 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):20C4 | 320,862 |
(D4×C10)⋊21C4 = (D4×C10)⋊21C4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10):21C4 | 320,863 |
(D4×C10)⋊22C4 = (D4×C10)⋊22C4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10):22C4 | 320,867 |
(D4×C10)⋊23C4 = C2×D4×Dic5 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10):23C4 | 320,1467 |
(D4×C10)⋊24C4 = C24.38D10 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):24C4 | 320,1470 |
(D4×C10)⋊25C4 = C2×C23⋊Dic5 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):25C4 | 320,846 |
(D4×C10)⋊26C4 = C24.18D10 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10):26C4 | 320,847 |
(D4×C10)⋊27C4 = C5×C23.23D4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10):27C4 | 320,887 |
(D4×C10)⋊28C4 = C5×C24.3C22 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10):28C4 | 320,891 |
(D4×C10)⋊29C4 = C10×C23⋊C4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):29C4 | 320,910 |
(D4×C10)⋊30C4 = C5×C23.C23 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10):30C4 | 320,911 |
(D4×C10)⋊31C4 = C10×D4⋊C4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10):31C4 | 320,915 |
(D4×C10)⋊32C4 = C5×C23.37D4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):32C4 | 320,919 |
(D4×C10)⋊33C4 = C10×C4≀C2 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):33C4 | 320,921 |
(D4×C10)⋊34C4 = C5×C42⋊C22 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10):34C4 | 320,922 |
(D4×C10)⋊35C4 = C5×C22.11C24 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10):35C4 | 320,1520 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C10).1C4 = (C2×D4).F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).1C4 | 320,259 |
(D4×C10).2C4 = (D4×C10).C4 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | 8- | (D4xC10).2C4 | 320,261 |
(D4×C10).3C4 = Dic5.SD16 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).3C4 | 320,263 |
(D4×C10).4C4 = C5⋊C8⋊7D4 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).4C4 | 320,1111 |
(D4×C10).5C4 = (C2×D4).7F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).5C4 | 320,1113 |
(D4×C10).6C4 = (C2×D4).9F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | 8- | (D4xC10).6C4 | 320,1115 |
(D4×C10).7C4 = Dic5.23D8 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).7C4 | 320,262 |
(D4×C10).8C4 = D4×C5⋊C8 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).8C4 | 320,1110 |
(D4×C10).9C4 = C20⋊2M4(2) | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).9C4 | 320,1112 |
(D4×C10).10C4 = (C2×D4).8F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).10C4 | 320,1114 |
(D4×C10).11C4 = D5⋊(C4.D4) | φ: C4/C1 → C4 ⊆ Out D4×C10 | 40 | 8+ | (D4xC10).11C4 | 320,1116 |
(D4×C10).12C4 = C2×D4.F5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).12C4 | 320,1593 |
(D4×C10).13C4 = Dic5.C24 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | 8- | (D4xC10).13C4 | 320,1594 |
(D4×C10).14C4 = C42.7D10 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).14C4 | 320,98 |
(D4×C10).15C4 = C42.Dic5 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | 4 | (D4xC10).15C4 | 320,100 |
(D4×C10).16C4 = C20.9D8 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).16C4 | 320,102 |
(D4×C10).17C4 = C5×C42.C22 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).17C4 | 320,134 |
(D4×C10).18C4 = C5×C4.D8 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 160 | | (D4xC10).18C4 | 320,136 |
(D4×C10).19C4 = C5×C42.C4 | φ: C4/C1 → C4 ⊆ Out D4×C10 | 80 | 4 | (D4xC10).19C4 | 320,160 |
(D4×C10).20C4 = C20.57D8 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).20C4 | 320,92 |
(D4×C10).21C4 = D4×C5⋊2C8 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).21C4 | 320,637 |
(D4×C10).22C4 = C20⋊7M4(2) | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).22C4 | 320,639 |
(D4×C10).23C4 = C2×C20.D4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10).23C4 | 320,843 |
(D4×C10).24C4 = (D4×C10).24C4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).24C4 | 320,861 |
(D4×C10).25C4 = C2×D4.Dic5 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).25C4 | 320,1490 |
(D4×C10).26C4 = C20.76C24 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10).26C4 | 320,1491 |
(D4×C10).27C4 = C5×D4⋊C8 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).27C4 | 320,130 |
(D4×C10).28C4 = C42.47D10 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).28C4 | 320,638 |
(D4×C10).29C4 = (D4×C10).29C4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10).29C4 | 320,864 |
(D4×C10).30C4 = C5×(C22×C8)⋊C2 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).30C4 | 320,909 |
(D4×C10).31C4 = C10×C4.D4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | | (D4xC10).31C4 | 320,912 |
(D4×C10).32C4 = C5×M4(2).8C22 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10).32C4 | 320,914 |
(D4×C10).33C4 = C5×C8⋊9D4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).33C4 | 320,936 |
(D4×C10).34C4 = C5×C8⋊6D4 | φ: C4/C2 → C2 ⊆ Out D4×C10 | 160 | | (D4xC10).34C4 | 320,937 |
(D4×C10).35C4 = C5×Q8○M4(2) | φ: C4/C2 → C2 ⊆ Out D4×C10 | 80 | 4 | (D4xC10).35C4 | 320,1570 |
(D4×C10).36C4 = D4×C40 | φ: trivial image | 160 | | (D4xC10).36C4 | 320,935 |
(D4×C10).37C4 = C10×C8○D4 | φ: trivial image | 160 | | (D4xC10).37C4 | 320,1569 |