Copied to
clipboard

?

G = C10×C8○D4order 320 = 26·5

Direct product of C10 and C8○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C8○D4, C20.93C24, C40.80C23, C4○D4.4C20, D4.8(C2×C20), Q8.9(C2×C20), (C2×C40)⋊54C22, (C22×C40)⋊27C2, (C22×C8)⋊13C10, (C2×D4).12C20, (D4×C10).37C4, (Q8×C10).30C4, (C2×Q8).10C20, C4.17(C23×C10), C2.11(C23×C20), C4.22(C22×C20), C10.84(C23×C4), C23.20(C2×C20), C8.17(C22×C10), M4(2)⋊11(C2×C10), (C10×M4(2))⋊35C2, (C2×M4(2))⋊17C10, (C2×C20).969C23, C20.226(C22×C4), C22.4(C22×C20), (C5×M4(2))⋊40C22, (C22×C20).600C22, (C2×C8)⋊16(C2×C10), (C2×C4).53(C2×C20), (C5×C4○D4).12C4, (C5×D4).44(C2×C4), (C5×Q8).48(C2×C4), (C2×C20).447(C2×C4), (C10×C4○D4).28C2, (C2×C4○D4).14C10, C4○D4.14(C2×C10), (C5×C4○D4).59C22, (C22×C10).154(C2×C4), (C22×C4).127(C2×C10), (C2×C10).136(C22×C4), (C2×C4).139(C22×C10), SmallGroup(320,1569)

Series: Derived Chief Lower central Upper central

C1C2 — C10×C8○D4
C1C2C4C20C40C2×C40C5×C8○D4 — C10×C8○D4
C1C2 — C10×C8○D4
C1C2×C40 — C10×C8○D4

Subgroups: 290 in 266 conjugacy classes, 242 normal (20 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×6], C22, C22 [×6], C22 [×6], C5, C8 [×8], C2×C4, C2×C4 [×15], D4 [×12], Q8 [×4], C23 [×3], C10, C10 [×2], C10 [×6], C2×C8, C2×C8 [×15], M4(2) [×12], C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], C20 [×2], C20 [×6], C2×C10, C2×C10 [×6], C2×C10 [×6], C22×C8 [×3], C2×M4(2) [×3], C8○D4 [×8], C2×C4○D4, C40 [×8], C2×C20, C2×C20 [×15], C5×D4 [×12], C5×Q8 [×4], C22×C10 [×3], C2×C8○D4, C2×C40, C2×C40 [×15], C5×M4(2) [×12], C22×C20 [×3], D4×C10 [×3], Q8×C10, C5×C4○D4 [×8], C22×C40 [×3], C10×M4(2) [×3], C5×C8○D4 [×8], C10×C4○D4, C10×C8○D4

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C5, C2×C4 [×28], C23 [×15], C10 [×15], C22×C4 [×14], C24, C20 [×8], C2×C10 [×35], C8○D4 [×2], C23×C4, C2×C20 [×28], C22×C10 [×15], C2×C8○D4, C22×C20 [×14], C23×C10, C5×C8○D4 [×2], C23×C20, C10×C8○D4

Generators and relations
 G = < a,b,c,d | a10=b8=d2=1, c2=b4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b4c >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 125 67 148 59 134 50 119)(2 126 68 149 60 135 41 120)(3 127 69 150 51 136 42 111)(4 128 70 141 52 137 43 112)(5 129 61 142 53 138 44 113)(6 130 62 143 54 139 45 114)(7 121 63 144 55 140 46 115)(8 122 64 145 56 131 47 116)(9 123 65 146 57 132 48 117)(10 124 66 147 58 133 49 118)(11 74 37 90 159 103 28 99)(12 75 38 81 160 104 29 100)(13 76 39 82 151 105 30 91)(14 77 40 83 152 106 21 92)(15 78 31 84 153 107 22 93)(16 79 32 85 154 108 23 94)(17 80 33 86 155 109 24 95)(18 71 34 87 156 110 25 96)(19 72 35 88 157 101 26 97)(20 73 36 89 158 102 27 98)
(1 74 59 103)(2 75 60 104)(3 76 51 105)(4 77 52 106)(5 78 53 107)(6 79 54 108)(7 80 55 109)(8 71 56 110)(9 72 57 101)(10 73 58 102)(11 148 159 119)(12 149 160 120)(13 150 151 111)(14 141 152 112)(15 142 153 113)(16 143 154 114)(17 144 155 115)(18 145 156 116)(19 146 157 117)(20 147 158 118)(21 128 40 137)(22 129 31 138)(23 130 32 139)(24 121 33 140)(25 122 34 131)(26 123 35 132)(27 124 36 133)(28 125 37 134)(29 126 38 135)(30 127 39 136)(41 100 68 81)(42 91 69 82)(43 92 70 83)(44 93 61 84)(45 94 62 85)(46 95 63 86)(47 96 64 87)(48 97 65 88)(49 98 66 89)(50 99 67 90)
(1 79)(2 80)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 114)(12 115)(13 116)(14 117)(15 118)(16 119)(17 120)(18 111)(19 112)(20 113)(21 132)(22 133)(23 134)(24 135)(25 136)(26 137)(27 138)(28 139)(29 140)(30 131)(31 124)(32 125)(33 126)(34 127)(35 128)(36 129)(37 130)(38 121)(39 122)(40 123)(41 95)(42 96)(43 97)(44 98)(45 99)(46 100)(47 91)(48 92)(49 93)(50 94)(51 110)(52 101)(53 102)(54 103)(55 104)(56 105)(57 106)(58 107)(59 108)(60 109)(61 89)(62 90)(63 81)(64 82)(65 83)(66 84)(67 85)(68 86)(69 87)(70 88)(141 157)(142 158)(143 159)(144 160)(145 151)(146 152)(147 153)(148 154)(149 155)(150 156)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,125,67,148,59,134,50,119)(2,126,68,149,60,135,41,120)(3,127,69,150,51,136,42,111)(4,128,70,141,52,137,43,112)(5,129,61,142,53,138,44,113)(6,130,62,143,54,139,45,114)(7,121,63,144,55,140,46,115)(8,122,64,145,56,131,47,116)(9,123,65,146,57,132,48,117)(10,124,66,147,58,133,49,118)(11,74,37,90,159,103,28,99)(12,75,38,81,160,104,29,100)(13,76,39,82,151,105,30,91)(14,77,40,83,152,106,21,92)(15,78,31,84,153,107,22,93)(16,79,32,85,154,108,23,94)(17,80,33,86,155,109,24,95)(18,71,34,87,156,110,25,96)(19,72,35,88,157,101,26,97)(20,73,36,89,158,102,27,98), (1,74,59,103)(2,75,60,104)(3,76,51,105)(4,77,52,106)(5,78,53,107)(6,79,54,108)(7,80,55,109)(8,71,56,110)(9,72,57,101)(10,73,58,102)(11,148,159,119)(12,149,160,120)(13,150,151,111)(14,141,152,112)(15,142,153,113)(16,143,154,114)(17,144,155,115)(18,145,156,116)(19,146,157,117)(20,147,158,118)(21,128,40,137)(22,129,31,138)(23,130,32,139)(24,121,33,140)(25,122,34,131)(26,123,35,132)(27,124,36,133)(28,125,37,134)(29,126,38,135)(30,127,39,136)(41,100,68,81)(42,91,69,82)(43,92,70,83)(44,93,61,84)(45,94,62,85)(46,95,63,86)(47,96,64,87)(48,97,65,88)(49,98,66,89)(50,99,67,90), (1,79)(2,80)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,132)(22,133)(23,134)(24,135)(25,136)(26,137)(27,138)(28,139)(29,140)(30,131)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,121)(39,122)(40,123)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,91)(48,92)(49,93)(50,94)(51,110)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,89)(62,90)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(141,157)(142,158)(143,159)(144,160)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,125,67,148,59,134,50,119)(2,126,68,149,60,135,41,120)(3,127,69,150,51,136,42,111)(4,128,70,141,52,137,43,112)(5,129,61,142,53,138,44,113)(6,130,62,143,54,139,45,114)(7,121,63,144,55,140,46,115)(8,122,64,145,56,131,47,116)(9,123,65,146,57,132,48,117)(10,124,66,147,58,133,49,118)(11,74,37,90,159,103,28,99)(12,75,38,81,160,104,29,100)(13,76,39,82,151,105,30,91)(14,77,40,83,152,106,21,92)(15,78,31,84,153,107,22,93)(16,79,32,85,154,108,23,94)(17,80,33,86,155,109,24,95)(18,71,34,87,156,110,25,96)(19,72,35,88,157,101,26,97)(20,73,36,89,158,102,27,98), (1,74,59,103)(2,75,60,104)(3,76,51,105)(4,77,52,106)(5,78,53,107)(6,79,54,108)(7,80,55,109)(8,71,56,110)(9,72,57,101)(10,73,58,102)(11,148,159,119)(12,149,160,120)(13,150,151,111)(14,141,152,112)(15,142,153,113)(16,143,154,114)(17,144,155,115)(18,145,156,116)(19,146,157,117)(20,147,158,118)(21,128,40,137)(22,129,31,138)(23,130,32,139)(24,121,33,140)(25,122,34,131)(26,123,35,132)(27,124,36,133)(28,125,37,134)(29,126,38,135)(30,127,39,136)(41,100,68,81)(42,91,69,82)(43,92,70,83)(44,93,61,84)(45,94,62,85)(46,95,63,86)(47,96,64,87)(48,97,65,88)(49,98,66,89)(50,99,67,90), (1,79)(2,80)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,132)(22,133)(23,134)(24,135)(25,136)(26,137)(27,138)(28,139)(29,140)(30,131)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,121)(39,122)(40,123)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,91)(48,92)(49,93)(50,94)(51,110)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,89)(62,90)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(141,157)(142,158)(143,159)(144,160)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,125,67,148,59,134,50,119),(2,126,68,149,60,135,41,120),(3,127,69,150,51,136,42,111),(4,128,70,141,52,137,43,112),(5,129,61,142,53,138,44,113),(6,130,62,143,54,139,45,114),(7,121,63,144,55,140,46,115),(8,122,64,145,56,131,47,116),(9,123,65,146,57,132,48,117),(10,124,66,147,58,133,49,118),(11,74,37,90,159,103,28,99),(12,75,38,81,160,104,29,100),(13,76,39,82,151,105,30,91),(14,77,40,83,152,106,21,92),(15,78,31,84,153,107,22,93),(16,79,32,85,154,108,23,94),(17,80,33,86,155,109,24,95),(18,71,34,87,156,110,25,96),(19,72,35,88,157,101,26,97),(20,73,36,89,158,102,27,98)], [(1,74,59,103),(2,75,60,104),(3,76,51,105),(4,77,52,106),(5,78,53,107),(6,79,54,108),(7,80,55,109),(8,71,56,110),(9,72,57,101),(10,73,58,102),(11,148,159,119),(12,149,160,120),(13,150,151,111),(14,141,152,112),(15,142,153,113),(16,143,154,114),(17,144,155,115),(18,145,156,116),(19,146,157,117),(20,147,158,118),(21,128,40,137),(22,129,31,138),(23,130,32,139),(24,121,33,140),(25,122,34,131),(26,123,35,132),(27,124,36,133),(28,125,37,134),(29,126,38,135),(30,127,39,136),(41,100,68,81),(42,91,69,82),(43,92,70,83),(44,93,61,84),(45,94,62,85),(46,95,63,86),(47,96,64,87),(48,97,65,88),(49,98,66,89),(50,99,67,90)], [(1,79),(2,80),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,114),(12,115),(13,116),(14,117),(15,118),(16,119),(17,120),(18,111),(19,112),(20,113),(21,132),(22,133),(23,134),(24,135),(25,136),(26,137),(27,138),(28,139),(29,140),(30,131),(31,124),(32,125),(33,126),(34,127),(35,128),(36,129),(37,130),(38,121),(39,122),(40,123),(41,95),(42,96),(43,97),(44,98),(45,99),(46,100),(47,91),(48,92),(49,93),(50,94),(51,110),(52,101),(53,102),(54,103),(55,104),(56,105),(57,106),(58,107),(59,108),(60,109),(61,89),(62,90),(63,81),(64,82),(65,83),(66,84),(67,85),(68,86),(69,87),(70,88),(141,157),(142,158),(143,159),(144,160),(145,151),(146,152),(147,153),(148,154),(149,155),(150,156)])

Matrix representation G ⊆ GL3(𝔽41) generated by

4000
0160
0016
,
100
0140
0014
,
100
001
0400
,
100
0040
0400
G:=sub<GL(3,GF(41))| [40,0,0,0,16,0,0,0,16],[1,0,0,0,14,0,0,0,14],[1,0,0,0,0,40,0,1,0],[1,0,0,0,0,40,0,40,0] >;

200 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4J5A5B5C5D8A···8H8I···8T10A···10L10M···10AJ20A···20P20Q···20AN40A···40AF40AG···40CB
order12222···244444···455558···88···810···1010···1020···2020···2040···4040···40
size11112···211112···211111···12···21···12···21···12···21···12···2

200 irreducible representations

dim111111111111111122
type+++++
imageC1C2C2C2C2C4C4C4C5C10C10C10C10C20C20C20C8○D4C5×C8○D4
kernelC10×C8○D4C22×C40C10×M4(2)C5×C8○D4C10×C4○D4D4×C10Q8×C10C5×C4○D4C2×C8○D4C22×C8C2×M4(2)C8○D4C2×C4○D4C2×D4C2×Q8C4○D4C10C2
# reps133816284121232424832832

In GAP, Magma, Sage, TeX

C_{10}\times C_8\circ D_4
% in TeX

G:=Group("C10xC8oD4");
// GroupNames label

G:=SmallGroup(320,1569);
// by ID

G=gap.SmallGroup(320,1569);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1731,124]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^8=d^2=1,c^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽