Copied to
clipboard

?

G = C20.34M4(2)  order 320 = 26·5

9th non-split extension by C20 of M4(2) acting via M4(2)/C22=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.34M4(2), (C2×Dic5)⋊9C8, (C22×C4).15F5, C23.41(C2×F5), (C22×C20).35C4, C10.15(C22×C8), C22.6(D5⋊C8), (C4×Dic5).31C4, Dic5.19(C2×C8), Dic5⋊C816C2, C54(C42.12C4), C10.26(C2×M4(2)), C4.12(C22.F5), C23.2F5.7C2, Dic5.30(C4○D4), C22.48(C22×F5), (C22×Dic5).32C4, C10.14(C42⋊C2), (C4×Dic5).327C22, (C2×Dic5).345C23, C2.6(D10.C23), (C22×Dic5).273C22, (C4×C5⋊C8)⋊18C2, C2.16(C2×D5⋊C8), (C2×C10).15(C2×C8), (C2×C5⋊C8).38C22, (C2×C4).108(C2×F5), (C2×C4×Dic5).52C2, (C2×C20).107(C2×C4), C2.4(C2×C22.F5), (C2×C10).61(C22×C4), (C22×C10).61(C2×C4), (C2×Dic5).183(C2×C4), SmallGroup(320,1092)

Series: Derived Chief Lower central Upper central

C1C10 — C20.34M4(2)
C1C5C10Dic5C2×Dic5C2×C5⋊C8C23.2F5 — C20.34M4(2)
C5C10 — C20.34M4(2)

Subgroups: 330 in 118 conjugacy classes, 58 normal (30 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×8], C22, C22 [×2], C22 [×2], C5, C8 [×4], C2×C4 [×2], C2×C4 [×12], C23, C10 [×3], C10 [×2], C42 [×4], C2×C8 [×4], C22×C4, C22×C4 [×2], Dic5 [×6], Dic5, C20 [×2], C20, C2×C10, C2×C10 [×2], C2×C10 [×2], C4×C8 [×2], C22⋊C8 [×2], C4⋊C8 [×2], C2×C42, C5⋊C8 [×4], C2×Dic5 [×4], C2×Dic5 [×4], C2×Dic5 [×2], C2×C20 [×2], C2×C20 [×2], C22×C10, C42.12C4, C4×Dic5 [×4], C2×C5⋊C8 [×4], C22×Dic5 [×2], C22×C20, C4×C5⋊C8 [×2], Dic5⋊C8 [×2], C23.2F5 [×2], C2×C4×Dic5, C20.34M4(2)

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], C23, C2×C8 [×6], M4(2) [×2], C22×C4, C4○D4 [×2], F5, C42⋊C2, C22×C8, C2×M4(2), C2×F5 [×3], C42.12C4, D5⋊C8 [×2], C22.F5 [×2], C22×F5, C2×D5⋊C8, D10.C23, C2×C22.F5, C20.34M4(2)

Generators and relations
 G = < a,b,c | a20=b8=c2=1, bab-1=a13, ac=ca, cbc=a10b5 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 27 64 49 143 91 128 119)(2 24 73 42 144 88 137 112)(3 21 62 55 145 85 126 105)(4 38 71 48 146 82 135 118)(5 35 80 41 147 99 124 111)(6 32 69 54 148 96 133 104)(7 29 78 47 149 93 122 117)(8 26 67 60 150 90 131 110)(9 23 76 53 151 87 140 103)(10 40 65 46 152 84 129 116)(11 37 74 59 153 81 138 109)(12 34 63 52 154 98 127 102)(13 31 72 45 155 95 136 115)(14 28 61 58 156 92 125 108)(15 25 70 51 157 89 134 101)(16 22 79 44 158 86 123 114)(17 39 68 57 159 83 132 107)(18 36 77 50 160 100 121 120)(19 33 66 43 141 97 130 113)(20 30 75 56 142 94 139 106)
(21 95)(22 96)(23 97)(24 98)(25 99)(26 100)(27 81)(28 82)(29 83)(30 84)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 91)(38 92)(39 93)(40 94)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,27,64,49,143,91,128,119)(2,24,73,42,144,88,137,112)(3,21,62,55,145,85,126,105)(4,38,71,48,146,82,135,118)(5,35,80,41,147,99,124,111)(6,32,69,54,148,96,133,104)(7,29,78,47,149,93,122,117)(8,26,67,60,150,90,131,110)(9,23,76,53,151,87,140,103)(10,40,65,46,152,84,129,116)(11,37,74,59,153,81,138,109)(12,34,63,52,154,98,127,102)(13,31,72,45,155,95,136,115)(14,28,61,58,156,92,125,108)(15,25,70,51,157,89,134,101)(16,22,79,44,158,86,123,114)(17,39,68,57,159,83,132,107)(18,36,77,50,160,100,121,120)(19,33,66,43,141,97,130,113)(20,30,75,56,142,94,139,106), (21,95)(22,96)(23,97)(24,98)(25,99)(26,100)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,27,64,49,143,91,128,119)(2,24,73,42,144,88,137,112)(3,21,62,55,145,85,126,105)(4,38,71,48,146,82,135,118)(5,35,80,41,147,99,124,111)(6,32,69,54,148,96,133,104)(7,29,78,47,149,93,122,117)(8,26,67,60,150,90,131,110)(9,23,76,53,151,87,140,103)(10,40,65,46,152,84,129,116)(11,37,74,59,153,81,138,109)(12,34,63,52,154,98,127,102)(13,31,72,45,155,95,136,115)(14,28,61,58,156,92,125,108)(15,25,70,51,157,89,134,101)(16,22,79,44,158,86,123,114)(17,39,68,57,159,83,132,107)(18,36,77,50,160,100,121,120)(19,33,66,43,141,97,130,113)(20,30,75,56,142,94,139,106), (21,95)(22,96)(23,97)(24,98)(25,99)(26,100)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,27,64,49,143,91,128,119),(2,24,73,42,144,88,137,112),(3,21,62,55,145,85,126,105),(4,38,71,48,146,82,135,118),(5,35,80,41,147,99,124,111),(6,32,69,54,148,96,133,104),(7,29,78,47,149,93,122,117),(8,26,67,60,150,90,131,110),(9,23,76,53,151,87,140,103),(10,40,65,46,152,84,129,116),(11,37,74,59,153,81,138,109),(12,34,63,52,154,98,127,102),(13,31,72,45,155,95,136,115),(14,28,61,58,156,92,125,108),(15,25,70,51,157,89,134,101),(16,22,79,44,158,86,123,114),(17,39,68,57,159,83,132,107),(18,36,77,50,160,100,121,120),(19,33,66,43,141,97,130,113),(20,30,75,56,142,94,139,106)], [(21,95),(22,96),(23,97),(24,98),(25,99),(26,100),(27,81),(28,82),(29,83),(30,84),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,91),(38,92),(39,93),(40,94),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
0320000
0074000
0084000
00327035
003314734
,
010000
100000
00321390
002720039
0034293820
002201421
,
100000
0400000
001000
000100
00321400
002720040

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,7,8,32,33,0,0,40,40,7,14,0,0,0,0,0,7,0,0,0,0,35,34],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,27,34,2,0,0,21,20,29,20,0,0,39,0,38,14,0,0,0,39,20,21],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,3,27,0,0,0,1,21,20,0,0,0,0,40,0,0,0,0,0,0,40] >;

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N4O4P4Q4R 5 8A···8P10A···10G20A···20H
order1222224444444···4444458···810···1020···20
size1111221111225···510101010410···104···44···4

56 irreducible representations

dim11111111122444444
type++++++++-
imageC1C2C2C2C2C4C4C4C8C4○D4M4(2)F5C2×F5C2×F5C22.F5D5⋊C8D10.C23
kernelC20.34M4(2)C4×C5⋊C8Dic5⋊C8C23.2F5C2×C4×Dic5C4×Dic5C22×Dic5C22×C20C2×Dic5Dic5C20C22×C4C2×C4C23C4C22C2
# reps122214221644121444

In GAP, Magma, Sage, TeX

C_{20}._{34}M_{4(2)}
% in TeX

G:=Group("C20.34M4(2)");
// GroupNames label

G:=SmallGroup(320,1092);
// by ID

G=gap.SmallGroup(320,1092);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,268,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^13,a*c=c*a,c*b*c=a^10*b^5>;
// generators/relations

׿
×
𝔽