Copied to
clipboard

?

G = C2×C20.48D4order 320 = 26·5

Direct product of C2 and C20.48D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C20.48D4, C234Dic10, C24.67D10, (C22×C10)⋊7Q8, (C2×C20).477D4, C20.424(C2×D4), C104(C22⋊Q8), (C23×C4).10D5, (C23×C20).12C2, C4⋊Dic563C22, C223(C2×Dic10), C10.19(C22×Q8), (C2×C10).282C24, (C2×C20).703C23, C10.130(C22×D4), (C22×C4).446D10, (C22×Dic10)⋊12C2, (C2×Dic10)⋊58C22, C22.79(C4○D20), C10.D443C22, C2.20(C22×Dic10), C23.231(C22×D5), C22.301(C23×D5), (C22×C10).411C23, (C23×C10).104C22, (C22×C20).528C22, (C2×Dic5).148C23, C23.D5.129C22, (C22×Dic5).160C22, C55(C2×C22⋊Q8), (C2×C10)⋊6(C2×Q8), (C2×C4⋊Dic5)⋊28C2, C10.59(C2×C4○D4), C2.69(C2×C4○D20), C4.120(C2×C5⋊D4), C2.5(C22×C5⋊D4), (C2×C10).571(C2×D4), (C2×C10.D4)⋊17C2, (C2×C4).262(C5⋊D4), (C2×C4).656(C22×D5), C22.100(C2×C5⋊D4), (C2×C23.D5).23C2, (C2×C10).110(C4○D4), SmallGroup(320,1456)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C20.48D4
C1C5C10C2×C10C2×Dic5C22×Dic5C22×Dic10 — C2×C20.48D4
C5C2×C10 — C2×C20.48D4

Subgroups: 878 in 322 conjugacy classes, 143 normal (23 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×4], C4 [×10], C22, C22 [×10], C22 [×12], C5, C2×C4 [×8], C2×C4 [×26], Q8 [×8], C23, C23 [×6], C23 [×4], C10 [×3], C10 [×4], C10 [×4], C22⋊C4 [×8], C4⋊C4 [×12], C22×C4 [×2], C22×C4 [×4], C22×C4 [×8], C2×Q8 [×8], C24, Dic5 [×8], C20 [×4], C20 [×2], C2×C10, C2×C10 [×10], C2×C10 [×12], C2×C22⋊C4 [×2], C2×C4⋊C4 [×3], C22⋊Q8 [×8], C23×C4, C22×Q8, Dic10 [×8], C2×Dic5 [×8], C2×Dic5 [×8], C2×C20 [×8], C2×C20 [×10], C22×C10, C22×C10 [×6], C22×C10 [×4], C2×C22⋊Q8, C10.D4 [×8], C4⋊Dic5 [×4], C23.D5 [×8], C2×Dic10 [×4], C2×Dic10 [×4], C22×Dic5 [×4], C22×C20 [×2], C22×C20 [×4], C22×C20 [×4], C23×C10, C2×C10.D4 [×2], C20.48D4 [×8], C2×C4⋊Dic5, C2×C23.D5 [×2], C22×Dic10, C23×C20, C2×C20.48D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], D5, C2×D4 [×6], C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22⋊Q8 [×4], C22×D4, C22×Q8, C2×C4○D4, Dic10 [×4], C5⋊D4 [×4], C22×D5 [×7], C2×C22⋊Q8, C2×Dic10 [×6], C4○D20 [×2], C2×C5⋊D4 [×6], C23×D5, C20.48D4 [×4], C22×Dic10, C2×C4○D20, C22×C5⋊D4, C2×C20.48D4

Generators and relations
 G = < a,b,c,d | a2=b20=c4=1, d2=b10, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b10c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 79)(2 80)(3 61)(4 62)(5 63)(6 64)(7 65)(8 66)(9 67)(10 68)(11 69)(12 70)(13 71)(14 72)(15 73)(16 74)(17 75)(18 76)(19 77)(20 78)(21 129)(22 130)(23 131)(24 132)(25 133)(26 134)(27 135)(28 136)(29 137)(30 138)(31 139)(32 140)(33 121)(34 122)(35 123)(36 124)(37 125)(38 126)(39 127)(40 128)(41 103)(42 104)(43 105)(44 106)(45 107)(46 108)(47 109)(48 110)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 101)(60 102)(81 143)(82 144)(83 145)(84 146)(85 147)(86 148)(87 149)(88 150)(89 151)(90 152)(91 153)(92 154)(93 155)(94 156)(95 157)(96 158)(97 159)(98 160)(99 141)(100 142)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 158 117 126)(2 157 118 125)(3 156 119 124)(4 155 120 123)(5 154 101 122)(6 153 102 121)(7 152 103 140)(8 151 104 139)(9 150 105 138)(10 149 106 137)(11 148 107 136)(12 147 108 135)(13 146 109 134)(14 145 110 133)(15 144 111 132)(16 143 112 131)(17 142 113 130)(18 141 114 129)(19 160 115 128)(20 159 116 127)(21 76 99 52)(22 75 100 51)(23 74 81 50)(24 73 82 49)(25 72 83 48)(26 71 84 47)(27 70 85 46)(28 69 86 45)(29 68 87 44)(30 67 88 43)(31 66 89 42)(32 65 90 41)(33 64 91 60)(34 63 92 59)(35 62 93 58)(36 61 94 57)(37 80 95 56)(38 79 96 55)(39 78 97 54)(40 77 98 53)
(1 136 11 126)(2 135 12 125)(3 134 13 124)(4 133 14 123)(5 132 15 122)(6 131 16 121)(7 130 17 140)(8 129 18 139)(9 128 19 138)(10 127 20 137)(21 76 31 66)(22 75 32 65)(23 74 33 64)(24 73 34 63)(25 72 35 62)(26 71 36 61)(27 70 37 80)(28 69 38 79)(29 68 39 78)(30 67 40 77)(41 100 51 90)(42 99 52 89)(43 98 53 88)(44 97 54 87)(45 96 55 86)(46 95 56 85)(47 94 57 84)(48 93 58 83)(49 92 59 82)(50 91 60 81)(101 144 111 154)(102 143 112 153)(103 142 113 152)(104 141 114 151)(105 160 115 150)(106 159 116 149)(107 158 117 148)(108 157 118 147)(109 156 119 146)(110 155 120 145)

G:=sub<Sym(160)| (1,79)(2,80)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,74)(17,75)(18,76)(19,77)(20,78)(21,129)(22,130)(23,131)(24,132)(25,133)(26,134)(27,135)(28,136)(29,137)(30,138)(31,139)(32,140)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,101)(60,102)(81,143)(82,144)(83,145)(84,146)(85,147)(86,148)(87,149)(88,150)(89,151)(90,152)(91,153)(92,154)(93,155)(94,156)(95,157)(96,158)(97,159)(98,160)(99,141)(100,142), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,158,117,126)(2,157,118,125)(3,156,119,124)(4,155,120,123)(5,154,101,122)(6,153,102,121)(7,152,103,140)(8,151,104,139)(9,150,105,138)(10,149,106,137)(11,148,107,136)(12,147,108,135)(13,146,109,134)(14,145,110,133)(15,144,111,132)(16,143,112,131)(17,142,113,130)(18,141,114,129)(19,160,115,128)(20,159,116,127)(21,76,99,52)(22,75,100,51)(23,74,81,50)(24,73,82,49)(25,72,83,48)(26,71,84,47)(27,70,85,46)(28,69,86,45)(29,68,87,44)(30,67,88,43)(31,66,89,42)(32,65,90,41)(33,64,91,60)(34,63,92,59)(35,62,93,58)(36,61,94,57)(37,80,95,56)(38,79,96,55)(39,78,97,54)(40,77,98,53), (1,136,11,126)(2,135,12,125)(3,134,13,124)(4,133,14,123)(5,132,15,122)(6,131,16,121)(7,130,17,140)(8,129,18,139)(9,128,19,138)(10,127,20,137)(21,76,31,66)(22,75,32,65)(23,74,33,64)(24,73,34,63)(25,72,35,62)(26,71,36,61)(27,70,37,80)(28,69,38,79)(29,68,39,78)(30,67,40,77)(41,100,51,90)(42,99,52,89)(43,98,53,88)(44,97,54,87)(45,96,55,86)(46,95,56,85)(47,94,57,84)(48,93,58,83)(49,92,59,82)(50,91,60,81)(101,144,111,154)(102,143,112,153)(103,142,113,152)(104,141,114,151)(105,160,115,150)(106,159,116,149)(107,158,117,148)(108,157,118,147)(109,156,119,146)(110,155,120,145)>;

G:=Group( (1,79)(2,80)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,74)(17,75)(18,76)(19,77)(20,78)(21,129)(22,130)(23,131)(24,132)(25,133)(26,134)(27,135)(28,136)(29,137)(30,138)(31,139)(32,140)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,101)(60,102)(81,143)(82,144)(83,145)(84,146)(85,147)(86,148)(87,149)(88,150)(89,151)(90,152)(91,153)(92,154)(93,155)(94,156)(95,157)(96,158)(97,159)(98,160)(99,141)(100,142), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,158,117,126)(2,157,118,125)(3,156,119,124)(4,155,120,123)(5,154,101,122)(6,153,102,121)(7,152,103,140)(8,151,104,139)(9,150,105,138)(10,149,106,137)(11,148,107,136)(12,147,108,135)(13,146,109,134)(14,145,110,133)(15,144,111,132)(16,143,112,131)(17,142,113,130)(18,141,114,129)(19,160,115,128)(20,159,116,127)(21,76,99,52)(22,75,100,51)(23,74,81,50)(24,73,82,49)(25,72,83,48)(26,71,84,47)(27,70,85,46)(28,69,86,45)(29,68,87,44)(30,67,88,43)(31,66,89,42)(32,65,90,41)(33,64,91,60)(34,63,92,59)(35,62,93,58)(36,61,94,57)(37,80,95,56)(38,79,96,55)(39,78,97,54)(40,77,98,53), (1,136,11,126)(2,135,12,125)(3,134,13,124)(4,133,14,123)(5,132,15,122)(6,131,16,121)(7,130,17,140)(8,129,18,139)(9,128,19,138)(10,127,20,137)(21,76,31,66)(22,75,32,65)(23,74,33,64)(24,73,34,63)(25,72,35,62)(26,71,36,61)(27,70,37,80)(28,69,38,79)(29,68,39,78)(30,67,40,77)(41,100,51,90)(42,99,52,89)(43,98,53,88)(44,97,54,87)(45,96,55,86)(46,95,56,85)(47,94,57,84)(48,93,58,83)(49,92,59,82)(50,91,60,81)(101,144,111,154)(102,143,112,153)(103,142,113,152)(104,141,114,151)(105,160,115,150)(106,159,116,149)(107,158,117,148)(108,157,118,147)(109,156,119,146)(110,155,120,145) );

G=PermutationGroup([(1,79),(2,80),(3,61),(4,62),(5,63),(6,64),(7,65),(8,66),(9,67),(10,68),(11,69),(12,70),(13,71),(14,72),(15,73),(16,74),(17,75),(18,76),(19,77),(20,78),(21,129),(22,130),(23,131),(24,132),(25,133),(26,134),(27,135),(28,136),(29,137),(30,138),(31,139),(32,140),(33,121),(34,122),(35,123),(36,124),(37,125),(38,126),(39,127),(40,128),(41,103),(42,104),(43,105),(44,106),(45,107),(46,108),(47,109),(48,110),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,101),(60,102),(81,143),(82,144),(83,145),(84,146),(85,147),(86,148),(87,149),(88,150),(89,151),(90,152),(91,153),(92,154),(93,155),(94,156),(95,157),(96,158),(97,159),(98,160),(99,141),(100,142)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,158,117,126),(2,157,118,125),(3,156,119,124),(4,155,120,123),(5,154,101,122),(6,153,102,121),(7,152,103,140),(8,151,104,139),(9,150,105,138),(10,149,106,137),(11,148,107,136),(12,147,108,135),(13,146,109,134),(14,145,110,133),(15,144,111,132),(16,143,112,131),(17,142,113,130),(18,141,114,129),(19,160,115,128),(20,159,116,127),(21,76,99,52),(22,75,100,51),(23,74,81,50),(24,73,82,49),(25,72,83,48),(26,71,84,47),(27,70,85,46),(28,69,86,45),(29,68,87,44),(30,67,88,43),(31,66,89,42),(32,65,90,41),(33,64,91,60),(34,63,92,59),(35,62,93,58),(36,61,94,57),(37,80,95,56),(38,79,96,55),(39,78,97,54),(40,77,98,53)], [(1,136,11,126),(2,135,12,125),(3,134,13,124),(4,133,14,123),(5,132,15,122),(6,131,16,121),(7,130,17,140),(8,129,18,139),(9,128,19,138),(10,127,20,137),(21,76,31,66),(22,75,32,65),(23,74,33,64),(24,73,34,63),(25,72,35,62),(26,71,36,61),(27,70,37,80),(28,69,38,79),(29,68,39,78),(30,67,40,77),(41,100,51,90),(42,99,52,89),(43,98,53,88),(44,97,54,87),(45,96,55,86),(46,95,56,85),(47,94,57,84),(48,93,58,83),(49,92,59,82),(50,91,60,81),(101,144,111,154),(102,143,112,153),(103,142,113,152),(104,141,114,151),(105,160,115,150),(106,159,116,149),(107,158,117,148),(108,157,118,147),(109,156,119,146),(110,155,120,145)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
000400
000040
,
400000
04000
003100
00001
000400
,
400000
00100
040000
000032
000320
,
10000
00100
01000
000032
000320

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,4,0,0,0,0,0,31,0,0,0,0,0,0,40,0,0,0,1,0],[40,0,0,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,32,0],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,32,0] >;

92 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P5A5B10A···10AD20A···20AF
order12···222224···44···45510···1020···20
size11···122222···220···20222···22···2

92 irreducible representations

dim1111111222222222
type++++++++-+++-
imageC1C2C2C2C2C2C2D4Q8D5C4○D4D10D10C5⋊D4Dic10C4○D20
kernelC2×C20.48D4C2×C10.D4C20.48D4C2×C4⋊Dic5C2×C23.D5C22×Dic10C23×C20C2×C20C22×C10C23×C4C2×C10C22×C4C24C2×C4C23C22
# reps12812114424122161616

In GAP, Magma, Sage, TeX

C_2\times C_{20}._{48}D_4
% in TeX

G:=Group("C2xC20.48D4");
// GroupNames label

G:=SmallGroup(320,1456);
// by ID

G=gap.SmallGroup(320,1456);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,184,675,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=1,d^2=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^10*c^-1>;
// generators/relations

׿
×
𝔽