extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Q8)⋊1(C2×C4) = SD16×F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 40 | 8 | (C5xQ8):1(C2xC4) | 320,1072 |
(C5×Q8)⋊2(C2×C4) = SD16⋊F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 40 | 8 | (C5xQ8):2(C2xC4) | 320,1073 |
(C5×Q8)⋊3(C2×C4) = C2×Q8⋊F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | | (C5xQ8):3(C2xC4) | 320,1119 |
(C5×Q8)⋊4(C2×C4) = C2×Q8⋊2F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | | (C5xQ8):4(C2xC4) | 320,1121 |
(C5×Q8)⋊5(C2×C4) = D5⋊C4≀C2 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 40 | 8 | (C5xQ8):5(C2xC4) | 320,1130 |
(C5×Q8)⋊6(C2×C4) = C4○D4⋊F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 40 | 8 | (C5xQ8):6(C2xC4) | 320,1131 |
(C5×Q8)⋊7(C2×C4) = C2×Q8×F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | | (C5xQ8):7(C2xC4) | 320,1599 |
(C5×Q8)⋊8(C2×C4) = C4○D4×F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 40 | 8 | (C5xQ8):8(C2xC4) | 320,1603 |
(C5×Q8)⋊9(C2×C4) = D5.2+ 1+4 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 40 | 8 | (C5xQ8):9(C2xC4) | 320,1604 |
(C5×Q8)⋊10(C2×C4) = Dic5⋊7SD16 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8):10(C2xC4) | 320,415 |
(C5×Q8)⋊11(C2×C4) = D5×Q8⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8):11(C2xC4) | 320,428 |
(C5×Q8)⋊12(C2×C4) = Q8⋊(C4×D5) | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8):12(C2xC4) | 320,430 |
(C5×Q8)⋊13(C2×C4) = Q8⋊D5⋊6C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8):13(C2xC4) | 320,444 |
(C5×Q8)⋊14(C2×C4) = D5×C4≀C2 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 40 | 4 | (C5xQ8):14(C2xC4) | 320,447 |
(C5×Q8)⋊15(C2×C4) = SD16×Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8):15(C2xC4) | 320,788 |
(C5×Q8)⋊16(C2×C4) = SD16⋊Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8):16(C2xC4) | 320,791 |
(C5×Q8)⋊17(C2×C4) = C4×Q8⋊D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):17(C2xC4) | 320,652 |
(C5×Q8)⋊18(C2×C4) = C42.56D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):18(C2xC4) | 320,653 |
(C5×Q8)⋊19(C2×C4) = C4×Q8×D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):19(C2xC4) | 320,1243 |
(C5×Q8)⋊20(C2×C4) = C4×Q8⋊2D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):20(C2xC4) | 320,1245 |
(C5×Q8)⋊21(C2×C4) = C42.126D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):21(C2xC4) | 320,1246 |
(C5×Q8)⋊22(C2×C4) = SD16×C20 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):22(C2xC4) | 320,939 |
(C5×Q8)⋊23(C2×C4) = C5×SD16⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):23(C2xC4) | 320,941 |
(C5×Q8)⋊24(C2×C4) = C2×Q8⋊Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 320 | | (C5xQ8):24(C2xC4) | 320,851 |
(C5×Q8)⋊25(C2×C4) = C4○D4⋊Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):25(C2xC4) | 320,859 |
(C5×Q8)⋊26(C2×C4) = C2×D4⋊2Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 80 | | (C5xQ8):26(C2xC4) | 320,862 |
(C5×Q8)⋊27(C2×C4) = C2×Q8×Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 320 | | (C5xQ8):27(C2xC4) | 320,1483 |
(C5×Q8)⋊28(C2×C4) = C4○D4×Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):28(C2xC4) | 320,1498 |
(C5×Q8)⋊29(C2×C4) = C10.1062- 1+4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):29(C2xC4) | 320,1499 |
(C5×Q8)⋊30(C2×C4) = C10×Q8⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 320 | | (C5xQ8):30(C2xC4) | 320,916 |
(C5×Q8)⋊31(C2×C4) = C5×C23.36D4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8):31(C2xC4) | 320,918 |
(C5×Q8)⋊32(C2×C4) = C10×C4≀C2 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 80 | | (C5xQ8):32(C2xC4) | 320,921 |
(C5×Q8)⋊33(C2×C4) = C4○D4×C20 | φ: trivial image | 160 | | (C5xQ8):33(C2xC4) | 320,1519 |
(C5×Q8)⋊34(C2×C4) = C5×C23.33C23 | φ: trivial image | 160 | | (C5xQ8):34(C2xC4) | 320,1522 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Q8).1(C2×C4) = SD16⋊3F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 80 | 8 | (C5xQ8).1(C2xC4) | 320,1074 |
(C5×Q8).2(C2×C4) = SD16⋊2F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 80 | 8 | (C5xQ8).2(C2xC4) | 320,1075 |
(C5×Q8).3(C2×C4) = Q16×F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 80 | 8- | (C5xQ8).3(C2xC4) | 320,1076 |
(C5×Q8).4(C2×C4) = Dic20⋊C4 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 80 | 8- | (C5xQ8).4(C2xC4) | 320,1077 |
(C5×Q8).5(C2×C4) = Q16⋊5F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 80 | 8+ | (C5xQ8).5(C2xC4) | 320,1078 |
(C5×Q8).6(C2×C4) = Q16⋊F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×Q8 | 80 | 8+ | (C5xQ8).6(C2xC4) | 320,1079 |
(C5×Q8).7(C2×C4) = (C2×Q8)⋊4F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8- | (C5xQ8).7(C2xC4) | 320,1120 |
(C5×Q8).8(C2×C4) = (C2×Q8)⋊6F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8+ | (C5xQ8).8(C2xC4) | 320,1122 |
(C5×Q8).9(C2×C4) = C4○D20⋊C4 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8 | (C5xQ8).9(C2xC4) | 320,1132 |
(C5×Q8).10(C2×C4) = D4⋊F5⋊C2 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8 | (C5xQ8).10(C2xC4) | 320,1133 |
(C5×Q8).11(C2×C4) = C2×Q8.F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 160 | | (C5xQ8).11(C2xC4) | 320,1597 |
(C5×Q8).12(C2×C4) = Dic5.20C24 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8+ | (C5xQ8).12(C2xC4) | 320,1598 |
(C5×Q8).13(C2×C4) = D5.2- 1+4 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8- | (C5xQ8).13(C2xC4) | 320,1600 |
(C5×Q8).14(C2×C4) = Dic5.21C24 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8 | (C5xQ8).14(C2xC4) | 320,1601 |
(C5×Q8).15(C2×C4) = Dic5.22C24 | φ: C2×C4/C2 → C4 ⊆ Out C5×Q8 | 80 | 8 | (C5xQ8).15(C2xC4) | 320,1602 |
(C5×Q8).16(C2×C4) = C5⋊Q16⋊5C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 320 | | (C5xQ8).16(C2xC4) | 320,416 |
(C5×Q8).17(C2×C4) = Dic5⋊4Q16 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 320 | | (C5xQ8).17(C2xC4) | 320,417 |
(C5×Q8).18(C2×C4) = (Q8×D5)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8).18(C2xC4) | 320,429 |
(C5×Q8).19(C2×C4) = Q8⋊2D5⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 160 | | (C5xQ8).19(C2xC4) | 320,431 |
(C5×Q8).20(C2×C4) = C42⋊D10 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).20(C2xC4) | 320,448 |
(C5×Q8).21(C2×C4) = M4(2).22D10 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).21(C2xC4) | 320,450 |
(C5×Q8).22(C2×C4) = C42.196D10 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).22(C2xC4) | 320,451 |
(C5×Q8).23(C2×C4) = Q16×Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 320 | | (C5xQ8).23(C2xC4) | 320,810 |
(C5×Q8).24(C2×C4) = Q16⋊Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 320 | | (C5xQ8).24(C2xC4) | 320,811 |
(C5×Q8).25(C2×C4) = D8⋊5Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).25(C2xC4) | 320,823 |
(C5×Q8).26(C2×C4) = D8⋊4Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).26(C2xC4) | 320,824 |
(C5×Q8).27(C2×C4) = C4×C5⋊Q16 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 320 | | (C5xQ8).27(C2xC4) | 320,656 |
(C5×Q8).28(C2×C4) = C42.59D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 320 | | (C5xQ8).28(C2xC4) | 320,657 |
(C5×Q8).29(C2×C4) = C40.93D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).29(C2xC4) | 320,771 |
(C5×Q8).30(C2×C4) = C40.50D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).30(C2xC4) | 320,772 |
(C5×Q8).31(C2×C4) = C42.125D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8).31(C2xC4) | 320,1244 |
(C5×Q8).32(C2×C4) = D5×C8○D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).32(C2xC4) | 320,1421 |
(C5×Q8).33(C2×C4) = C20.72C24 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).33(C2xC4) | 320,1422 |
(C5×Q8).34(C2×C4) = Q16×C20 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 320 | | (C5xQ8).34(C2xC4) | 320,940 |
(C5×Q8).35(C2×C4) = C5×Q16⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 320 | | (C5xQ8).35(C2xC4) | 320,942 |
(C5×Q8).36(C2×C4) = C5×C8○D8 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 80 | 2 | (C5xQ8).36(C2xC4) | 320,944 |
(C5×Q8).37(C2×C4) = C5×C8.26D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).37(C2xC4) | 320,945 |
(C5×Q8).38(C2×C4) = (Q8×C10)⋊16C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8).38(C2xC4) | 320,852 |
(C5×Q8).39(C2×C4) = C20.(C2×D4) | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8).39(C2xC4) | 320,860 |
(C5×Q8).40(C2×C4) = (D4×C10)⋊21C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).40(C2xC4) | 320,863 |
(C5×Q8).41(C2×C4) = C10.422- 1+4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8).41(C2xC4) | 320,1484 |
(C5×Q8).42(C2×C4) = C2×D4.Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8).42(C2xC4) | 320,1490 |
(C5×Q8).43(C2×C4) = C20.76C24 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).43(C2xC4) | 320,1491 |
(C5×Q8).44(C2×C4) = C5×C23.24D4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8).44(C2xC4) | 320,917 |
(C5×Q8).45(C2×C4) = C5×C23.38D4 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 160 | | (C5xQ8).45(C2xC4) | 320,920 |
(C5×Q8).46(C2×C4) = C5×C42⋊C22 | φ: C2×C4/C22 → C2 ⊆ Out C5×Q8 | 80 | 4 | (C5xQ8).46(C2xC4) | 320,922 |
(C5×Q8).47(C2×C4) = C5×C23.32C23 | φ: trivial image | 160 | | (C5xQ8).47(C2xC4) | 320,1521 |
(C5×Q8).48(C2×C4) = C10×C8○D4 | φ: trivial image | 160 | | (C5xQ8).48(C2xC4) | 320,1569 |
(C5×Q8).49(C2×C4) = C5×Q8○M4(2) | φ: trivial image | 80 | 4 | (C5xQ8).49(C2xC4) | 320,1570 |