extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊2D5)⋊1C2 = D4⋊3D20 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):1C2 | 320,408 |
(C2×D4⋊2D5)⋊2C2 = Dic10⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):2C2 | 320,785 |
(C2×D4⋊2D5)⋊3C2 = D4⋊5D20 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):3C2 | 320,1226 |
(C2×D4⋊2D5)⋊4C2 = D4⋊6D20 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):4C2 | 320,1227 |
(C2×D4⋊2D5)⋊5C2 = C24.56D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):5C2 | 320,1258 |
(C2×D4⋊2D5)⋊6C2 = C24.33D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):6C2 | 320,1263 |
(C2×D4⋊2D5)⋊7C2 = C24.34D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):7C2 | 320,1264 |
(C2×D4⋊2D5)⋊8C2 = C20⋊(C4○D4) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):8C2 | 320,1268 |
(C2×D4⋊2D5)⋊9C2 = C10.682- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):9C2 | 320,1269 |
(C2×D4⋊2D5)⋊10C2 = Dic10⋊19D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):10C2 | 320,1270 |
(C2×D4⋊2D5)⋊11C2 = Dic10⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):11C2 | 320,1271 |
(C2×D4⋊2D5)⋊12C2 = C4⋊C4⋊21D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):12C2 | 320,1278 |
(C2×D4⋊2D5)⋊13C2 = C10.392+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):13C2 | 320,1280 |
(C2×D4⋊2D5)⋊14C2 = C10.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):14C2 | 320,1282 |
(C2×D4⋊2D5)⋊15C2 = C10.732- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):15C2 | 320,1283 |
(C2×D4⋊2D5)⋊16C2 = C10.822- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):16C2 | 320,1327 |
(C2×D4⋊2D5)⋊17C2 = C4⋊C4⋊28D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):17C2 | 320,1328 |
(C2×D4⋊2D5)⋊18C2 = C42.233D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):18C2 | 320,1340 |
(C2×D4⋊2D5)⋊19C2 = Dic10⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):19C2 | 320,1349 |
(C2×D4⋊2D5)⋊20C2 = C42⋊26D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):20C2 | 320,1387 |
(C2×D4⋊2D5)⋊21C2 = C42.238D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):21C2 | 320,1388 |
(C2×D4⋊2D5)⋊22C2 = Dic10⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):22C2 | 320,1390 |
(C2×D4⋊2D5)⋊23C2 = C2×D8⋊D5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):23C2 | 320,1427 |
(C2×D4⋊2D5)⋊24C2 = C2×D8⋊3D5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):24C2 | 320,1428 |
(C2×D4⋊2D5)⋊25C2 = C2×SD16⋊3D5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):25C2 | 320,1433 |
(C2×D4⋊2D5)⋊26C2 = SD16⋊D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5):26C2 | 320,1445 |
(C2×D4⋊2D5)⋊27C2 = C24.42D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):27C2 | 320,1478 |
(C2×D4⋊2D5)⋊28C2 = C10.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):28C2 | 320,1496 |
(C2×D4⋊2D5)⋊29C2 = C2×D4⋊6D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5):29C2 | 320,1614 |
(C2×D4⋊2D5)⋊30C2 = C2×D4.10D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5):30C2 | 320,1620 |
(C2×D4⋊2D5)⋊31C2 = D20.37C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5):31C2 | 320,1623 |
(C2×D4⋊2D5)⋊32C2 = C2×D5×C4○D4 | φ: trivial image | 80 | | (C2xD4:2D5):32C2 | 320,1618 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊2D5).1C2 = C23⋊C4⋊5D5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5).1C2 | 320,367 |
(C2×D4⋊2D5).2C2 = M4(2).19D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5).2C2 | 320,372 |
(C2×D4⋊2D5).3C2 = D4⋊(C4×D5) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).3C2 | 320,398 |
(C2×D4⋊2D5).4C2 = D4⋊2D5⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).4C2 | 320,399 |
(C2×D4⋊2D5).5C2 = D4.D20 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).5C2 | 320,410 |
(C2×D4⋊2D5).6C2 = Dic10.16D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).6C2 | 320,800 |
(C2×D4⋊2D5).7C2 = (C2×D4).7F5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).7C2 | 320,1113 |
(C2×D4⋊2D5).8C2 = (C2×D4).9F5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5).8C2 | 320,1115 |
(C2×D4⋊2D5).9C2 = C42.108D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).9C2 | 320,1218 |
(C2×D4⋊2D5).10C2 = C10.792- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).10C2 | 320,1320 |
(C2×D4⋊2D5).11C2 = C42.141D10 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).11C2 | 320,1347 |
(C2×D4⋊2D5).12C2 = C2×SD16⋊D5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).12C2 | 320,1432 |
(C2×D4⋊2D5).13C2 = C2×D4⋊F5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | | (C2xD4:2D5).13C2 | 320,1106 |
(C2×D4⋊2D5).14C2 = (C2×D4)⋊6F5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5).14C2 | 320,1107 |
(C2×D4⋊2D5).15C2 = (C2×D4)⋊8F5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5).15C2 | 320,1109 |
(C2×D4⋊2D5).16C2 = (C2×D4).8F5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).16C2 | 320,1114 |
(C2×D4⋊2D5).17C2 = C2×D4.F5 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 160 | | (C2xD4:2D5).17C2 | 320,1593 |
(C2×D4⋊2D5).18C2 = Dic5.C24 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2D5 | 80 | 8- | (C2xD4:2D5).18C2 | 320,1594 |
(C2×D4⋊2D5).19C2 = C4×D4⋊2D5 | φ: trivial image | 160 | | (C2xD4:2D5).19C2 | 320,1208 |