extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D40)⋊1C2 = C20⋊4D8 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):1C2 | 320,322 |
(C2×D40)⋊2C2 = D20⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | | (C2xD40):2C2 | 320,359 |
(C2×D40)⋊3C2 = D20⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):3C2 | 320,361 |
(C2×D40)⋊4C2 = D4⋊D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | | (C2xD40):4C2 | 320,400 |
(C2×D40)⋊5C2 = D20⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):5C2 | 320,413 |
(C2×D40)⋊6C2 = D20⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):6C2 | 320,438 |
(C2×D40)⋊7C2 = C4⋊D40 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):7C2 | 320,470 |
(C2×D40)⋊8C2 = C2×D80 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):8C2 | 320,529 |
(C2×D40)⋊9C2 = C40⋊29D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):9C2 | 320,742 |
(C2×D40)⋊10C2 = C8⋊D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):10C2 | 320,339 |
(C2×D40)⋊11C2 = D80⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40):11C2 | 320,535 |
(C2×D40)⋊12C2 = C40⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):12C2 | 320,762 |
(C2×D40)⋊13C2 = D4.4D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40):13C2 | 320,769 |
(C2×D40)⋊14C2 = C2×C8⋊D10 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | | (C2xD40):14C2 | 320,1418 |
(C2×D40)⋊15C2 = D4.12D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40):15C2 | 320,1424 |
(C2×D40)⋊16C2 = C8⋊7D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):16C2 | 320,510 |
(C2×D40)⋊17C2 = C2×C5⋊D16 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):17C2 | 320,773 |
(C2×D40)⋊18C2 = C40⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):18C2 | 320,778 |
(C2×D40)⋊19C2 = C2×D5×D8 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | | (C2xD40):19C2 | 320,1426 |
(C2×D40)⋊20C2 = C2×Q8.D10 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):20C2 | 320,1437 |
(C2×D40)⋊21C2 = C8.21D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40):21C2 | 320,524 |
(C2×D40)⋊22C2 = D8⋊D10 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40):22C2 | 320,820 |
(C2×D40)⋊23C2 = D8⋊15D10 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40):23C2 | 320,1441 |
(C2×D40)⋊24C2 = C8⋊2D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):24C2 | 320,492 |
(C2×D40)⋊25C2 = C40⋊9D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40):25C2 | 320,803 |
(C2×D40)⋊26C2 = C2×D40⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | | (C2xD40):26C2 | 320,1431 |
(C2×D40)⋊27C2 = C2×D40⋊7C2 | φ: trivial image | 160 | | (C2xD40):27C2 | 320,1413 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D40).1C2 = D40⋊7C4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).1C2 | 320,67 |
(C2×D40).2C2 = C8.8D20 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).2C2 | 320,323 |
(C2×D40).3C2 = D20.12D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).3C2 | 320,446 |
(C2×D40).4C2 = D20.19D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).4C2 | 320,471 |
(C2×D40).5C2 = C2×C16⋊D5 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).5C2 | 320,530 |
(C2×D40).6C2 = D40.4C4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40).6C2 | 320,74 |
(C2×D40).7C2 = D40⋊9C4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).7C2 | 320,338 |
(C2×D40).8C2 = C40.5D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).8C2 | 320,49 |
(C2×D40).9C2 = D40⋊12C4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).9C2 | 320,499 |
(C2×D40).10C2 = C2×C5⋊SD32 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).10C2 | 320,805 |
(C2×D40).11C2 = C40.28D4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).11C2 | 320,818 |
(C2×D40).12C2 = D40.6C4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 80 | 4+ | (C2xD40).12C2 | 320,53 |
(C2×D40).13C2 = D40⋊15C4 | φ: C2/C1 → C2 ⊆ Out C2×D40 | 160 | | (C2xD40).13C2 | 320,496 |
(C2×D40).14C2 = C4×D40 | φ: trivial image | 160 | | (C2xD40).14C2 | 320,319 |