Extensions 1→N→G→Q→1 with N=C2×D40 and Q=C2

Direct product G=N×Q with N=C2×D40 and Q=C2
dρLabelID
C22×D40160C2^2xD40320,1412

Semidirect products G=N:Q with N=C2×D40 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D40)⋊1C2 = C204D8φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):1C2320,322
(C2×D40)⋊2C2 = D2013D4φ: C2/C1C2 ⊆ Out C2×D4080(C2xD40):2C2320,359
(C2×D40)⋊3C2 = D2014D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):3C2320,361
(C2×D40)⋊4C2 = D4⋊D20φ: C2/C1C2 ⊆ Out C2×D4080(C2xD40):4C2320,400
(C2×D40)⋊5C2 = D203D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):5C2320,413
(C2×D40)⋊6C2 = D204D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):6C2320,438
(C2×D40)⋊7C2 = C4⋊D40φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):7C2320,470
(C2×D40)⋊8C2 = C2×D80φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):8C2320,529
(C2×D40)⋊9C2 = C4029D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):9C2320,742
(C2×D40)⋊10C2 = C8⋊D20φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):10C2320,339
(C2×D40)⋊11C2 = D80⋊C2φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40):11C2320,535
(C2×D40)⋊12C2 = C403D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):12C2320,762
(C2×D40)⋊13C2 = D4.4D20φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40):13C2320,769
(C2×D40)⋊14C2 = C2×C8⋊D10φ: C2/C1C2 ⊆ Out C2×D4080(C2xD40):14C2320,1418
(C2×D40)⋊15C2 = D4.12D20φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40):15C2320,1424
(C2×D40)⋊16C2 = C87D20φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):16C2320,510
(C2×D40)⋊17C2 = C2×C5⋊D16φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):17C2320,773
(C2×D40)⋊18C2 = C405D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):18C2320,778
(C2×D40)⋊19C2 = C2×D5×D8φ: C2/C1C2 ⊆ Out C2×D4080(C2xD40):19C2320,1426
(C2×D40)⋊20C2 = C2×Q8.D10φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):20C2320,1437
(C2×D40)⋊21C2 = C8.21D20φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40):21C2320,524
(C2×D40)⋊22C2 = D8⋊D10φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40):22C2320,820
(C2×D40)⋊23C2 = D815D10φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40):23C2320,1441
(C2×D40)⋊24C2 = C82D20φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):24C2320,492
(C2×D40)⋊25C2 = C409D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40):25C2320,803
(C2×D40)⋊26C2 = C2×D40⋊C2φ: C2/C1C2 ⊆ Out C2×D4080(C2xD40):26C2320,1431
(C2×D40)⋊27C2 = C2×D407C2φ: trivial image160(C2xD40):27C2320,1413

Non-split extensions G=N.Q with N=C2×D40 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D40).1C2 = D407C4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).1C2320,67
(C2×D40).2C2 = C8.8D20φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).2C2320,323
(C2×D40).3C2 = D20.12D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).3C2320,446
(C2×D40).4C2 = D20.19D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).4C2320,471
(C2×D40).5C2 = C2×C16⋊D5φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).5C2320,530
(C2×D40).6C2 = D40.4C4φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40).6C2320,74
(C2×D40).7C2 = D409C4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).7C2320,338
(C2×D40).8C2 = C40.5D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).8C2320,49
(C2×D40).9C2 = D4012C4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).9C2320,499
(C2×D40).10C2 = C2×C5⋊SD32φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).10C2320,805
(C2×D40).11C2 = C40.28D4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).11C2320,818
(C2×D40).12C2 = D40.6C4φ: C2/C1C2 ⊆ Out C2×D40804+(C2xD40).12C2320,53
(C2×D40).13C2 = D4015C4φ: C2/C1C2 ⊆ Out C2×D40160(C2xD40).13C2320,496
(C2×D40).14C2 = C4×D40φ: trivial image160(C2xD40).14C2320,319

׿
×
𝔽