Copied to
clipboard

G = C2×C5⋊SD32order 320 = 26·5

Direct product of C2 and C5⋊SD32

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C5⋊SD32, Q166D10, C103SD32, C20.23D8, C40.24D4, C40.26C23, D40.9C22, C54(C2×SD32), (C2×Q16)⋊1D5, (C10×Q16)⋊4C2, C10.65(C2×D8), (C2×C10).44D8, C4.10(D4⋊D5), C52C169C22, (C2×D40).10C2, (C2×C8).239D10, (C2×C20).182D4, C20.181(C2×D4), C8.16(C5⋊D4), (C5×Q16)⋊6C22, C8.32(C22×D5), (C2×C40).91C22, C22.23(D4⋊D5), (C2×C52C16)⋊8C2, C2.20(C2×D4⋊D5), C4.11(C2×C5⋊D4), (C2×C4).144(C5⋊D4), SmallGroup(320,805)

Series: Derived Chief Lower central Upper central

C1C40 — C2×C5⋊SD32
C1C5C10C20C40D40C2×D40 — C2×C5⋊SD32
C5C10C20C40 — C2×C5⋊SD32
C1C22C2×C4C2×C8C2×Q16

Generators and relations for C2×C5⋊SD32
 G = < a,b,c,d | a2=b5=c16=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c7 >

Subgroups: 478 in 90 conjugacy classes, 39 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C16, C2×C8, D8, Q16, Q16, C2×D4, C2×Q8, C20, C20, D10, C2×C10, C2×C16, SD32, C2×D8, C2×Q16, C40, D20, C2×C20, C2×C20, C5×Q8, C22×D5, C2×SD32, C52C16, D40, D40, C2×C40, C5×Q16, C5×Q16, C2×D20, Q8×C10, C2×C52C16, C5⋊SD32, C2×D40, C10×Q16, C2×C5⋊SD32
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, SD32, C2×D8, C5⋊D4, C22×D5, C2×SD32, D4⋊D5, C2×C5⋊D4, C5⋊SD32, C2×D4⋊D5, C2×C5⋊SD32

Smallest permutation representation of C2×C5⋊SD32
On 160 points
Generators in S160
(1 134)(2 135)(3 136)(4 137)(5 138)(6 139)(7 140)(8 141)(9 142)(10 143)(11 144)(12 129)(13 130)(14 131)(15 132)(16 133)(17 78)(18 79)(19 80)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 73)(29 74)(30 75)(31 76)(32 77)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(81 126)(82 127)(83 128)(84 113)(85 114)(86 115)(87 116)(88 117)(89 118)(90 119)(91 120)(92 121)(93 122)(94 123)(95 124)(96 125)(97 153)(98 154)(99 155)(100 156)(101 157)(102 158)(103 159)(104 160)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)
(1 58 155 91 24)(2 25 92 156 59)(3 60 157 93 26)(4 27 94 158 61)(5 62 159 95 28)(6 29 96 160 63)(7 64 145 81 30)(8 31 82 146 49)(9 50 147 83 32)(10 17 84 148 51)(11 52 149 85 18)(12 19 86 150 53)(13 54 151 87 20)(14 21 88 152 55)(15 56 153 89 22)(16 23 90 154 57)(33 135 70 121 100)(34 101 122 71 136)(35 137 72 123 102)(36 103 124 73 138)(37 139 74 125 104)(38 105 126 75 140)(39 141 76 127 106)(40 107 128 77 142)(41 143 78 113 108)(42 109 114 79 144)(43 129 80 115 110)(44 111 116 65 130)(45 131 66 117 112)(46 97 118 67 132)(47 133 68 119 98)(48 99 120 69 134)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 57)(18 64)(19 55)(20 62)(21 53)(22 60)(23 51)(24 58)(25 49)(26 56)(27 63)(28 54)(29 61)(30 52)(31 59)(32 50)(33 76)(34 67)(35 74)(36 65)(37 72)(38 79)(39 70)(40 77)(41 68)(42 75)(43 66)(44 73)(45 80)(46 71)(47 78)(48 69)(81 149)(82 156)(83 147)(84 154)(85 145)(86 152)(87 159)(88 150)(89 157)(90 148)(91 155)(92 146)(93 153)(94 160)(95 151)(96 158)(97 122)(98 113)(99 120)(100 127)(101 118)(102 125)(103 116)(104 123)(105 114)(106 121)(107 128)(108 119)(109 126)(110 117)(111 124)(112 115)(129 131)(130 138)(132 136)(133 143)(135 141)(137 139)(140 144)

G:=sub<Sym(160)| (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,144)(12,129)(13,130)(14,131)(15,132)(16,133)(17,78)(18,79)(19,80)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(81,126)(82,127)(83,128)(84,113)(85,114)(86,115)(87,116)(88,117)(89,118)(90,119)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152), (1,58,155,91,24)(2,25,92,156,59)(3,60,157,93,26)(4,27,94,158,61)(5,62,159,95,28)(6,29,96,160,63)(7,64,145,81,30)(8,31,82,146,49)(9,50,147,83,32)(10,17,84,148,51)(11,52,149,85,18)(12,19,86,150,53)(13,54,151,87,20)(14,21,88,152,55)(15,56,153,89,22)(16,23,90,154,57)(33,135,70,121,100)(34,101,122,71,136)(35,137,72,123,102)(36,103,124,73,138)(37,139,74,125,104)(38,105,126,75,140)(39,141,76,127,106)(40,107,128,77,142)(41,143,78,113,108)(42,109,114,79,144)(43,129,80,115,110)(44,111,116,65,130)(45,131,66,117,112)(46,97,118,67,132)(47,133,68,119,98)(48,99,120,69,134), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,57)(18,64)(19,55)(20,62)(21,53)(22,60)(23,51)(24,58)(25,49)(26,56)(27,63)(28,54)(29,61)(30,52)(31,59)(32,50)(33,76)(34,67)(35,74)(36,65)(37,72)(38,79)(39,70)(40,77)(41,68)(42,75)(43,66)(44,73)(45,80)(46,71)(47,78)(48,69)(81,149)(82,156)(83,147)(84,154)(85,145)(86,152)(87,159)(88,150)(89,157)(90,148)(91,155)(92,146)(93,153)(94,160)(95,151)(96,158)(97,122)(98,113)(99,120)(100,127)(101,118)(102,125)(103,116)(104,123)(105,114)(106,121)(107,128)(108,119)(109,126)(110,117)(111,124)(112,115)(129,131)(130,138)(132,136)(133,143)(135,141)(137,139)(140,144)>;

G:=Group( (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,144)(12,129)(13,130)(14,131)(15,132)(16,133)(17,78)(18,79)(19,80)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(81,126)(82,127)(83,128)(84,113)(85,114)(86,115)(87,116)(88,117)(89,118)(90,119)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152), (1,58,155,91,24)(2,25,92,156,59)(3,60,157,93,26)(4,27,94,158,61)(5,62,159,95,28)(6,29,96,160,63)(7,64,145,81,30)(8,31,82,146,49)(9,50,147,83,32)(10,17,84,148,51)(11,52,149,85,18)(12,19,86,150,53)(13,54,151,87,20)(14,21,88,152,55)(15,56,153,89,22)(16,23,90,154,57)(33,135,70,121,100)(34,101,122,71,136)(35,137,72,123,102)(36,103,124,73,138)(37,139,74,125,104)(38,105,126,75,140)(39,141,76,127,106)(40,107,128,77,142)(41,143,78,113,108)(42,109,114,79,144)(43,129,80,115,110)(44,111,116,65,130)(45,131,66,117,112)(46,97,118,67,132)(47,133,68,119,98)(48,99,120,69,134), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,57)(18,64)(19,55)(20,62)(21,53)(22,60)(23,51)(24,58)(25,49)(26,56)(27,63)(28,54)(29,61)(30,52)(31,59)(32,50)(33,76)(34,67)(35,74)(36,65)(37,72)(38,79)(39,70)(40,77)(41,68)(42,75)(43,66)(44,73)(45,80)(46,71)(47,78)(48,69)(81,149)(82,156)(83,147)(84,154)(85,145)(86,152)(87,159)(88,150)(89,157)(90,148)(91,155)(92,146)(93,153)(94,160)(95,151)(96,158)(97,122)(98,113)(99,120)(100,127)(101,118)(102,125)(103,116)(104,123)(105,114)(106,121)(107,128)(108,119)(109,126)(110,117)(111,124)(112,115)(129,131)(130,138)(132,136)(133,143)(135,141)(137,139)(140,144) );

G=PermutationGroup([[(1,134),(2,135),(3,136),(4,137),(5,138),(6,139),(7,140),(8,141),(9,142),(10,143),(11,144),(12,129),(13,130),(14,131),(15,132),(16,133),(17,78),(18,79),(19,80),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,73),(29,74),(30,75),(31,76),(32,77),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(81,126),(82,127),(83,128),(84,113),(85,114),(86,115),(87,116),(88,117),(89,118),(90,119),(91,120),(92,121),(93,122),(94,123),(95,124),(96,125),(97,153),(98,154),(99,155),(100,156),(101,157),(102,158),(103,159),(104,160),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152)], [(1,58,155,91,24),(2,25,92,156,59),(3,60,157,93,26),(4,27,94,158,61),(5,62,159,95,28),(6,29,96,160,63),(7,64,145,81,30),(8,31,82,146,49),(9,50,147,83,32),(10,17,84,148,51),(11,52,149,85,18),(12,19,86,150,53),(13,54,151,87,20),(14,21,88,152,55),(15,56,153,89,22),(16,23,90,154,57),(33,135,70,121,100),(34,101,122,71,136),(35,137,72,123,102),(36,103,124,73,138),(37,139,74,125,104),(38,105,126,75,140),(39,141,76,127,106),(40,107,128,77,142),(41,143,78,113,108),(42,109,114,79,144),(43,129,80,115,110),(44,111,116,65,130),(45,131,66,117,112),(46,97,118,67,132),(47,133,68,119,98),(48,99,120,69,134)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,57),(18,64),(19,55),(20,62),(21,53),(22,60),(23,51),(24,58),(25,49),(26,56),(27,63),(28,54),(29,61),(30,52),(31,59),(32,50),(33,76),(34,67),(35,74),(36,65),(37,72),(38,79),(39,70),(40,77),(41,68),(42,75),(43,66),(44,73),(45,80),(46,71),(47,78),(48,69),(81,149),(82,156),(83,147),(84,154),(85,145),(86,152),(87,159),(88,150),(89,157),(90,148),(91,155),(92,146),(93,153),(94,160),(95,151),(96,158),(97,122),(98,113),(99,120),(100,127),(101,118),(102,125),(103,116),(104,123),(105,114),(106,121),(107,128),(108,119),(109,126),(110,117),(111,124),(112,115),(129,131),(130,138),(132,136),(133,143),(135,141),(137,139),(140,144)]])

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D5A5B8A8B8C8D10A···10F16A···16H20A20B20C20D20E···20L40A···40H
order122222444455888810···1016···162020202020···2040···40
size1111404022882222222···210···1044448···84···4

50 irreducible representations

dim111112222222222444
type+++++++++++++++
imageC1C2C2C2C2D4D4D5D8D8D10D10SD32C5⋊D4C5⋊D4D4⋊D5D4⋊D5C5⋊SD32
kernelC2×C5⋊SD32C2×C52C16C5⋊SD32C2×D40C10×Q16C40C2×C20C2×Q16C20C2×C10C2×C8Q16C10C8C2×C4C4C22C2
# reps114111122224844228

Matrix representation of C2×C5⋊SD32 in GL4(𝔽241) generated by

1000
0100
002400
000240
,
1000
0100
00189240
0010
,
9716000
22317900
002400
00521
,
1000
11824000
0010
00189240
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,240,0,0,0,0,240],[1,0,0,0,0,1,0,0,0,0,189,1,0,0,240,0],[97,223,0,0,160,179,0,0,0,0,240,52,0,0,0,1],[1,118,0,0,0,240,0,0,0,0,1,189,0,0,0,240] >;

C2×C5⋊SD32 in GAP, Magma, Sage, TeX

C_2\times C_5\rtimes {\rm SD}_{32}
% in TeX

G:=Group("C2xC5:SD32");
// GroupNames label

G:=SmallGroup(320,805);
// by ID

G=gap.SmallGroup(320,805);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,184,675,185,192,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^16=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^7>;
// generators/relations

׿
×
𝔽