Copied to
clipboard

G = D204D4order 320 = 26·5

4th semidirect product of D20 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D204D4, Q83D20, (C5×Q8)⋊2D4, (C2×D40)⋊6C2, C4.8(C2×D20), C4.95(D4×D5), C4⋊D205C2, C53(D4⋊D4), C4⋊C4.27D10, Q8⋊C46D5, (C2×C8).18D10, D101C88C2, C20.124(C2×D4), D206C412C2, C10.26C22≀C2, C10.70(C4○D8), (C2×C40).18C22, (C2×Q8).110D10, (C22×D5).26D4, C22.201(D4×D5), C2.9(Q8.D10), C2.17(D40⋊C2), C10.63(C8⋊C22), (C2×C20).251C23, (C2×Dic5).211D4, (C2×D20).69C22, (Q8×C10).34C22, C2.29(C22⋊D20), (C2×Q8⋊D5)⋊4C2, (C5×Q8⋊C4)⋊6C2, (C2×Q82D5)⋊1C2, (C2×C4×D5).28C22, (C2×C10).264(C2×D4), (C5×C4⋊C4).52C22, (C2×C52C8).42C22, (C2×C4).358(C22×D5), SmallGroup(320,438)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D204D4
C1C5C10C20C2×C20C2×C4×D5C4⋊D20 — D204D4
C5C10C2×C20 — D204D4
C1C22C2×C4Q8⋊C4

Generators and relations for D204D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=dad=a-1, cac-1=a11, cbc-1=a5b, dbd=a3b, dcd=c-1 >

Subgroups: 846 in 162 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C52C8, C40, C4×D5, D20, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22×D5, D4⋊D4, D40, C2×C52C8, D10⋊C4, Q8⋊D5, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q82D5, Q8×C10, D206C4, D101C8, C5×Q8⋊C4, C4⋊D20, C2×D40, C2×Q8⋊D5, C2×Q82D5, D204D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C4○D8, C8⋊C22, D20, C22×D5, D4⋊D4, C2×D20, D4×D5, C22⋊D20, D40⋊C2, Q8.D10, D204D4

Smallest permutation representation of D204D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 119)(2 118)(3 117)(4 116)(5 115)(6 114)(7 113)(8 112)(9 111)(10 110)(11 109)(12 108)(13 107)(14 106)(15 105)(16 104)(17 103)(18 102)(19 101)(20 120)(21 83)(22 82)(23 81)(24 100)(25 99)(26 98)(27 97)(28 96)(29 95)(30 94)(31 93)(32 92)(33 91)(34 90)(35 89)(36 88)(37 87)(38 86)(39 85)(40 84)(41 145)(42 144)(43 143)(44 142)(45 141)(46 160)(47 159)(48 158)(49 157)(50 156)(51 155)(52 154)(53 153)(54 152)(55 151)(56 150)(57 149)(58 148)(59 147)(60 146)(61 129)(62 128)(63 127)(64 126)(65 125)(66 124)(67 123)(68 122)(69 121)(70 140)(71 139)(72 138)(73 137)(74 136)(75 135)(76 134)(77 133)(78 132)(79 131)(80 130)
(1 84 124 155)(2 95 125 146)(3 86 126 157)(4 97 127 148)(5 88 128 159)(6 99 129 150)(7 90 130 141)(8 81 131 152)(9 92 132 143)(10 83 133 154)(11 94 134 145)(12 85 135 156)(13 96 136 147)(14 87 137 158)(15 98 138 149)(16 89 139 160)(17 100 140 151)(18 91 121 142)(19 82 122 153)(20 93 123 144)(21 72 52 105)(22 63 53 116)(23 74 54 107)(24 65 55 118)(25 76 56 109)(26 67 57 120)(27 78 58 111)(28 69 59 102)(29 80 60 113)(30 71 41 104)(31 62 42 115)(32 73 43 106)(33 64 44 117)(34 75 45 108)(35 66 46 119)(36 77 47 110)(37 68 48 101)(38 79 49 112)(39 70 50 103)(40 61 51 114)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 60)(29 59)(30 58)(31 57)(32 56)(33 55)(34 54)(35 53)(36 52)(37 51)(38 50)(39 49)(40 48)(61 68)(62 67)(63 66)(64 65)(69 80)(70 79)(71 78)(72 77)(73 76)(74 75)(81 158)(82 157)(83 156)(84 155)(85 154)(86 153)(87 152)(88 151)(89 150)(90 149)(91 148)(92 147)(93 146)(94 145)(95 144)(96 143)(97 142)(98 141)(99 160)(100 159)(101 114)(102 113)(103 112)(104 111)(105 110)(106 109)(107 108)(115 120)(116 119)(117 118)(121 127)(122 126)(123 125)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,119)(2,118)(3,117)(4,116)(5,115)(6,114)(7,113)(8,112)(9,111)(10,110)(11,109)(12,108)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,120)(21,83)(22,82)(23,81)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,145)(42,144)(43,143)(44,142)(45,141)(46,160)(47,159)(48,158)(49,157)(50,156)(51,155)(52,154)(53,153)(54,152)(55,151)(56,150)(57,149)(58,148)(59,147)(60,146)(61,129)(62,128)(63,127)(64,126)(65,125)(66,124)(67,123)(68,122)(69,121)(70,140)(71,139)(72,138)(73,137)(74,136)(75,135)(76,134)(77,133)(78,132)(79,131)(80,130), (1,84,124,155)(2,95,125,146)(3,86,126,157)(4,97,127,148)(5,88,128,159)(6,99,129,150)(7,90,130,141)(8,81,131,152)(9,92,132,143)(10,83,133,154)(11,94,134,145)(12,85,135,156)(13,96,136,147)(14,87,137,158)(15,98,138,149)(16,89,139,160)(17,100,140,151)(18,91,121,142)(19,82,122,153)(20,93,123,144)(21,72,52,105)(22,63,53,116)(23,74,54,107)(24,65,55,118)(25,76,56,109)(26,67,57,120)(27,78,58,111)(28,69,59,102)(29,80,60,113)(30,71,41,104)(31,62,42,115)(32,73,43,106)(33,64,44,117)(34,75,45,108)(35,66,46,119)(36,77,47,110)(37,68,48,101)(38,79,49,112)(39,70,50,103)(40,61,51,114), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(61,68)(62,67)(63,66)(64,65)(69,80)(70,79)(71,78)(72,77)(73,76)(74,75)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,150)(90,149)(91,148)(92,147)(93,146)(94,145)(95,144)(96,143)(97,142)(98,141)(99,160)(100,159)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)(115,120)(116,119)(117,118)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,119)(2,118)(3,117)(4,116)(5,115)(6,114)(7,113)(8,112)(9,111)(10,110)(11,109)(12,108)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,120)(21,83)(22,82)(23,81)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,145)(42,144)(43,143)(44,142)(45,141)(46,160)(47,159)(48,158)(49,157)(50,156)(51,155)(52,154)(53,153)(54,152)(55,151)(56,150)(57,149)(58,148)(59,147)(60,146)(61,129)(62,128)(63,127)(64,126)(65,125)(66,124)(67,123)(68,122)(69,121)(70,140)(71,139)(72,138)(73,137)(74,136)(75,135)(76,134)(77,133)(78,132)(79,131)(80,130), (1,84,124,155)(2,95,125,146)(3,86,126,157)(4,97,127,148)(5,88,128,159)(6,99,129,150)(7,90,130,141)(8,81,131,152)(9,92,132,143)(10,83,133,154)(11,94,134,145)(12,85,135,156)(13,96,136,147)(14,87,137,158)(15,98,138,149)(16,89,139,160)(17,100,140,151)(18,91,121,142)(19,82,122,153)(20,93,123,144)(21,72,52,105)(22,63,53,116)(23,74,54,107)(24,65,55,118)(25,76,56,109)(26,67,57,120)(27,78,58,111)(28,69,59,102)(29,80,60,113)(30,71,41,104)(31,62,42,115)(32,73,43,106)(33,64,44,117)(34,75,45,108)(35,66,46,119)(36,77,47,110)(37,68,48,101)(38,79,49,112)(39,70,50,103)(40,61,51,114), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(61,68)(62,67)(63,66)(64,65)(69,80)(70,79)(71,78)(72,77)(73,76)(74,75)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,150)(90,149)(91,148)(92,147)(93,146)(94,145)(95,144)(96,143)(97,142)(98,141)(99,160)(100,159)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)(115,120)(116,119)(117,118)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,119),(2,118),(3,117),(4,116),(5,115),(6,114),(7,113),(8,112),(9,111),(10,110),(11,109),(12,108),(13,107),(14,106),(15,105),(16,104),(17,103),(18,102),(19,101),(20,120),(21,83),(22,82),(23,81),(24,100),(25,99),(26,98),(27,97),(28,96),(29,95),(30,94),(31,93),(32,92),(33,91),(34,90),(35,89),(36,88),(37,87),(38,86),(39,85),(40,84),(41,145),(42,144),(43,143),(44,142),(45,141),(46,160),(47,159),(48,158),(49,157),(50,156),(51,155),(52,154),(53,153),(54,152),(55,151),(56,150),(57,149),(58,148),(59,147),(60,146),(61,129),(62,128),(63,127),(64,126),(65,125),(66,124),(67,123),(68,122),(69,121),(70,140),(71,139),(72,138),(73,137),(74,136),(75,135),(76,134),(77,133),(78,132),(79,131),(80,130)], [(1,84,124,155),(2,95,125,146),(3,86,126,157),(4,97,127,148),(5,88,128,159),(6,99,129,150),(7,90,130,141),(8,81,131,152),(9,92,132,143),(10,83,133,154),(11,94,134,145),(12,85,135,156),(13,96,136,147),(14,87,137,158),(15,98,138,149),(16,89,139,160),(17,100,140,151),(18,91,121,142),(19,82,122,153),(20,93,123,144),(21,72,52,105),(22,63,53,116),(23,74,54,107),(24,65,55,118),(25,76,56,109),(26,67,57,120),(27,78,58,111),(28,69,59,102),(29,80,60,113),(30,71,41,104),(31,62,42,115),(32,73,43,106),(33,64,44,117),(34,75,45,108),(35,66,46,119),(36,77,47,110),(37,68,48,101),(38,79,49,112),(39,70,50,103),(40,61,51,114)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,60),(29,59),(30,58),(31,57),(32,56),(33,55),(34,54),(35,53),(36,52),(37,51),(38,50),(39,49),(40,48),(61,68),(62,67),(63,66),(64,65),(69,80),(70,79),(71,78),(72,77),(73,76),(74,75),(81,158),(82,157),(83,156),(84,155),(85,154),(86,153),(87,152),(88,151),(89,150),(90,149),(91,148),(92,147),(93,146),(94,145),(95,144),(96,143),(97,142),(98,141),(99,160),(100,159),(101,114),(102,113),(103,112),(104,111),(105,110),(106,109),(107,108),(115,120),(116,119),(117,118),(121,127),(122,126),(123,125),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222222444444455888810···102020202020···2040···40
size111120202040224481010224420202···244448···84···4

47 irreducible representations

dim11111111222222222244444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D10D10D10C4○D8D20C8⋊C22D4×D5D4×D5D40⋊C2Q8.D10
kernelD204D4D206C4D101C8C5×Q8⋊C4C4⋊D20C2×D40C2×Q8⋊D5C2×Q82D5D20C2×Dic5C5×Q8C22×D5Q8⋊C4C4⋊C4C2×C8C2×Q8C10Q8C10C4C22C2C2
# reps11111111212122224812244

Matrix representation of D204D4 in GL4(𝔽41) generated by

13900
14000
00040
0017
,
01700
29000
003230
00119
,
9000
93200
003032
00911
,
40200
0100
0010
003440
G:=sub<GL(4,GF(41))| [1,1,0,0,39,40,0,0,0,0,0,1,0,0,40,7],[0,29,0,0,17,0,0,0,0,0,32,11,0,0,30,9],[9,9,0,0,0,32,0,0,0,0,30,9,0,0,32,11],[40,0,0,0,2,1,0,0,0,0,1,34,0,0,0,40] >;

D204D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_4D_4
% in TeX

G:=Group("D20:4D4");
// GroupNames label

G:=SmallGroup(320,438);
// by ID

G=gap.SmallGroup(320,438);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,758,135,184,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^5*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽