Copied to
clipboard

G = C403D4order 320 = 26·5

3rd semidirect product of C40 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C403D4, C23.18D20, C82(C5⋊D4), C54(C82D4), C406C44C2, (C2×D40)⋊12C2, (C2×C4).52D20, (C2×C8).78D10, C207D441C2, C20.421(C2×D4), (C2×C20).298D4, (C2×M4(2))⋊2D5, D205C442C2, (C10×M4(2))⋊2C2, (C2×C40).64C22, C4.115(C4○D20), C20.231(C4○D4), C2.23(C8⋊D10), C10.74(C4⋊D4), C2.22(C207D4), C10.23(C8⋊C22), (C2×C20).776C23, (C2×D20).23C22, C22.135(C2×D20), (C22×C4).143D10, (C22×C10).104D4, C4⋊Dic5.27C22, (C22×C20).305C22, C4.114(C2×C5⋊D4), (C2×C10).166(C2×D4), (C2×C4).725(C22×D5), SmallGroup(320,762)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C403D4
C1C5C10C2×C10C2×C20C2×D20C2×D40 — C403D4
C5C10C2×C20 — C403D4
C1C22C22×C4C2×M4(2)

Generators and relations for C403D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a19, cac=a-1, cbc=b-1 >

Subgroups: 694 in 130 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C10, C22⋊C4, C4⋊C4, C2×C8, M4(2), D8, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, D4⋊C4, C4.Q8, C4⋊D4, C2×M4(2), C2×D8, C40, C40, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C82D4, D40, C4⋊Dic5, D10⋊C4, C2×C40, C5×M4(2), C2×D20, C2×C5⋊D4, C22×C20, C406C4, D205C4, C2×D40, C207D4, C10×M4(2), C403D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C8⋊C22, D20, C5⋊D4, C22×D5, C82D4, C2×D20, C4○D20, C2×C5⋊D4, C8⋊D10, C207D4, C403D4

Smallest permutation representation of C403D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 50 115 137)(2 69 116 156)(3 48 117 135)(4 67 118 154)(5 46 119 133)(6 65 120 152)(7 44 81 131)(8 63 82 150)(9 42 83 129)(10 61 84 148)(11 80 85 127)(12 59 86 146)(13 78 87 125)(14 57 88 144)(15 76 89 123)(16 55 90 142)(17 74 91 121)(18 53 92 140)(19 72 93 159)(20 51 94 138)(21 70 95 157)(22 49 96 136)(23 68 97 155)(24 47 98 134)(25 66 99 153)(26 45 100 132)(27 64 101 151)(28 43 102 130)(29 62 103 149)(30 41 104 128)(31 60 105 147)(32 79 106 126)(33 58 107 145)(34 77 108 124)(35 56 109 143)(36 75 110 122)(37 54 111 141)(38 73 112 160)(39 52 113 139)(40 71 114 158)
(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(41 146)(42 145)(43 144)(44 143)(45 142)(46 141)(47 140)(48 139)(49 138)(50 137)(51 136)(52 135)(53 134)(54 133)(55 132)(56 131)(57 130)(58 129)(59 128)(60 127)(61 126)(62 125)(63 124)(64 123)(65 122)(66 121)(67 160)(68 159)(69 158)(70 157)(71 156)(72 155)(73 154)(74 153)(75 152)(76 151)(77 150)(78 149)(79 148)(80 147)(81 109)(82 108)(83 107)(84 106)(85 105)(86 104)(87 103)(88 102)(89 101)(90 100)(91 99)(92 98)(93 97)(94 96)(110 120)(111 119)(112 118)(113 117)(114 116)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,50,115,137)(2,69,116,156)(3,48,117,135)(4,67,118,154)(5,46,119,133)(6,65,120,152)(7,44,81,131)(8,63,82,150)(9,42,83,129)(10,61,84,148)(11,80,85,127)(12,59,86,146)(13,78,87,125)(14,57,88,144)(15,76,89,123)(16,55,90,142)(17,74,91,121)(18,53,92,140)(19,72,93,159)(20,51,94,138)(21,70,95,157)(22,49,96,136)(23,68,97,155)(24,47,98,134)(25,66,99,153)(26,45,100,132)(27,64,101,151)(28,43,102,130)(29,62,103,149)(30,41,104,128)(31,60,105,147)(32,79,106,126)(33,58,107,145)(34,77,108,124)(35,56,109,143)(36,75,110,122)(37,54,111,141)(38,73,112,160)(39,52,113,139)(40,71,114,158), (2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,140)(48,139)(49,138)(50,137)(51,136)(52,135)(53,134)(54,133)(55,132)(56,131)(57,130)(58,129)(59,128)(60,127)(61,126)(62,125)(63,124)(64,123)(65,122)(66,121)(67,160)(68,159)(69,158)(70,157)(71,156)(72,155)(73,154)(74,153)(75,152)(76,151)(77,150)(78,149)(79,148)(80,147)(81,109)(82,108)(83,107)(84,106)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(110,120)(111,119)(112,118)(113,117)(114,116)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,50,115,137)(2,69,116,156)(3,48,117,135)(4,67,118,154)(5,46,119,133)(6,65,120,152)(7,44,81,131)(8,63,82,150)(9,42,83,129)(10,61,84,148)(11,80,85,127)(12,59,86,146)(13,78,87,125)(14,57,88,144)(15,76,89,123)(16,55,90,142)(17,74,91,121)(18,53,92,140)(19,72,93,159)(20,51,94,138)(21,70,95,157)(22,49,96,136)(23,68,97,155)(24,47,98,134)(25,66,99,153)(26,45,100,132)(27,64,101,151)(28,43,102,130)(29,62,103,149)(30,41,104,128)(31,60,105,147)(32,79,106,126)(33,58,107,145)(34,77,108,124)(35,56,109,143)(36,75,110,122)(37,54,111,141)(38,73,112,160)(39,52,113,139)(40,71,114,158), (2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,140)(48,139)(49,138)(50,137)(51,136)(52,135)(53,134)(54,133)(55,132)(56,131)(57,130)(58,129)(59,128)(60,127)(61,126)(62,125)(63,124)(64,123)(65,122)(66,121)(67,160)(68,159)(69,158)(70,157)(71,156)(72,155)(73,154)(74,153)(75,152)(76,151)(77,150)(78,149)(79,148)(80,147)(81,109)(82,108)(83,107)(84,106)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(110,120)(111,119)(112,118)(113,117)(114,116) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,50,115,137),(2,69,116,156),(3,48,117,135),(4,67,118,154),(5,46,119,133),(6,65,120,152),(7,44,81,131),(8,63,82,150),(9,42,83,129),(10,61,84,148),(11,80,85,127),(12,59,86,146),(13,78,87,125),(14,57,88,144),(15,76,89,123),(16,55,90,142),(17,74,91,121),(18,53,92,140),(19,72,93,159),(20,51,94,138),(21,70,95,157),(22,49,96,136),(23,68,97,155),(24,47,98,134),(25,66,99,153),(26,45,100,132),(27,64,101,151),(28,43,102,130),(29,62,103,149),(30,41,104,128),(31,60,105,147),(32,79,106,126),(33,58,107,145),(34,77,108,124),(35,56,109,143),(36,75,110,122),(37,54,111,141),(38,73,112,160),(39,52,113,139),(40,71,114,158)], [(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(41,146),(42,145),(43,144),(44,143),(45,142),(46,141),(47,140),(48,139),(49,138),(50,137),(51,136),(52,135),(53,134),(54,133),(55,132),(56,131),(57,130),(58,129),(59,128),(60,127),(61,126),(62,125),(63,124),(64,123),(65,122),(66,121),(67,160),(68,159),(69,158),(70,157),(71,156),(72,155),(73,154),(74,153),(75,152),(76,151),(77,150),(78,149),(79,148),(80,147),(81,109),(82,108),(83,107),(84,106),(85,105),(86,104),(87,103),(88,102),(89,101),(90,100),(91,99),(92,98),(93,97),(94,96),(110,120),(111,119),(112,118),(113,117),(114,116)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222224444455888810···101010101020···202020202040···40
size11114404022440402244442···244442···244444···4

56 irreducible representations

dim1111112222222222244
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D5C4○D4D10D10C5⋊D4D20D20C4○D20C8⋊C22C8⋊D10
kernelC403D4C406C4D205C4C2×D40C207D4C10×M4(2)C40C2×C20C22×C10C2×M4(2)C20C2×C8C22×C4C8C2×C4C23C4C10C2
# reps1121212112242844828

Matrix representation of C403D4 in GL6(𝔽41)

090000
900000
003329813
00122284
003328812
0013372939
,
0400000
100000
0000400
0000351
001000
0064000
,
100000
0400000
001000
0064000
0000400
0000351

G:=sub<GL(6,GF(41))| [0,9,0,0,0,0,9,0,0,0,0,0,0,0,33,12,33,13,0,0,29,2,28,37,0,0,8,28,8,29,0,0,13,4,12,39],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,40,0,0,40,35,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,6,0,0,0,0,0,40,0,0,0,0,0,0,40,35,0,0,0,0,0,1] >;

C403D4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_3D_4
% in TeX

G:=Group("C40:3D4");
// GroupNames label

G:=SmallGroup(320,762);
// by ID

G=gap.SmallGroup(320,762);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,254,387,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^19,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽