Copied to
clipboard

G = C2×Q8.D10order 320 = 26·5

Direct product of C2 and Q8.D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×Q8.D10, Q1611D10, D4017C22, C40.34C23, C20.12C24, D20.7C23, C4.48(D4×D5), (C2×D40)⋊20C2, C104(C4○D8), (C2×Q16)⋊13D5, (C10×Q16)⋊8C2, (C4×D5).70D4, C20.87(C2×D4), D10.23(C2×D4), (C2×C8).247D10, (C8×D5)⋊15C22, Q8⋊D510C22, (C5×Q16)⋊9C22, C4.12(C23×D5), C8.40(C22×D5), (C5×Q8).6C23, Q8.6(C22×D5), (C2×C40).99C22, C52C8.23C23, (C2×Q8).154D10, Q82D57C22, (C22×D5).94D4, (C4×D5).64C23, C22.144(D4×D5), (C2×C20).529C23, (C2×Dic5).285D4, Dic5.125(C2×D4), C10.113(C22×D4), (C2×D20).186C22, (Q8×C10).151C22, (D5×C2×C8)⋊6C2, C54(C2×C4○D8), C2.86(C2×D4×D5), (C2×Q8⋊D5)⋊28C2, (C2×Q82D5)⋊16C2, (C2×C10).402(C2×D4), (C2×C4×D5).330C22, (C2×C4).617(C22×D5), (C2×C52C8).294C22, SmallGroup(320,1437)

Series: Derived Chief Lower central Upper central

C1C20 — C2×Q8.D10
C1C5C10C20C4×D5C2×C4×D5C2×Q82D5 — C2×Q8.D10
C5C10C20 — C2×Q8.D10
C1C22C2×C4C2×Q16

Generators and relations for C2×Q8.D10
 G = < a,b,c,d,e | a2=b4=e2=1, c2=d10=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=ebe=b-1, dcd-1=b-1c, ece=bc, ede=b2d9 >

Subgroups: 1054 in 266 conjugacy classes, 103 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C10, C2×C8, C2×C8, D8, SD16, Q16, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C52C8, C40, C4×D5, C4×D5, D20, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22×D5, C2×C4○D8, C8×D5, D40, C2×C52C8, Q8⋊D5, C2×C40, C5×Q16, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q82D5, Q82D5, Q8×C10, D5×C2×C8, C2×D40, Q8.D10, C2×Q8⋊D5, C10×Q16, C2×Q82D5, C2×Q8.D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C4○D8, C22×D4, C22×D5, C2×C4○D8, D4×D5, C23×D5, Q8.D10, C2×D4×D5, C2×Q8.D10

Smallest permutation representation of C2×Q8.D10
On 160 points
Generators in S160
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 41)(18 42)(19 43)(20 44)(21 125)(22 126)(23 127)(24 128)(25 129)(26 130)(27 131)(28 132)(29 133)(30 134)(31 135)(32 136)(33 137)(34 138)(35 139)(36 140)(37 121)(38 122)(39 123)(40 124)(61 111)(62 112)(63 113)(64 114)(65 115)(66 116)(67 117)(68 118)(69 119)(70 120)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 156)(82 157)(83 158)(84 159)(85 160)(86 141)(87 142)(88 143)(89 144)(90 145)(91 146)(92 147)(93 148)(94 149)(95 150)(96 151)(97 152)(98 153)(99 154)(100 155)
(1 30 11 40)(2 21 12 31)(3 32 13 22)(4 23 14 33)(5 34 15 24)(6 25 16 35)(7 36 17 26)(8 27 18 37)(9 38 19 28)(10 29 20 39)(41 130 51 140)(42 121 52 131)(43 132 53 122)(44 123 54 133)(45 134 55 124)(46 125 56 135)(47 136 57 126)(48 127 58 137)(49 138 59 128)(50 129 60 139)(61 145 71 155)(62 156 72 146)(63 147 73 157)(64 158 74 148)(65 149 75 159)(66 160 76 150)(67 151 77 141)(68 142 78 152)(69 153 79 143)(70 144 80 154)(81 102 91 112)(82 113 92 103)(83 104 93 114)(84 115 94 105)(85 106 95 116)(86 117 96 107)(87 108 97 118)(88 119 98 109)(89 110 99 120)(90 101 100 111)
(1 142 11 152)(2 79 12 69)(3 144 13 154)(4 61 14 71)(5 146 15 156)(6 63 16 73)(7 148 17 158)(8 65 18 75)(9 150 19 160)(10 67 20 77)(21 153 31 143)(22 80 32 70)(23 155 33 145)(24 62 34 72)(25 157 35 147)(26 64 36 74)(27 159 37 149)(28 66 38 76)(29 141 39 151)(30 68 40 78)(41 83 51 93)(42 105 52 115)(43 85 53 95)(44 107 54 117)(45 87 55 97)(46 109 56 119)(47 89 57 99)(48 111 58 101)(49 91 59 81)(50 113 60 103)(82 139 92 129)(84 121 94 131)(86 123 96 133)(88 125 98 135)(90 127 100 137)(102 128 112 138)(104 130 114 140)(106 132 116 122)(108 134 118 124)(110 136 120 126)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 107)(2 106)(3 105)(4 104)(5 103)(6 102)(7 101)(8 120)(9 119)(10 118)(11 117)(12 116)(13 115)(14 114)(15 113)(16 112)(17 111)(18 110)(19 109)(20 108)(21 85)(22 84)(23 83)(24 82)(25 81)(26 100)(27 99)(28 98)(29 97)(30 96)(31 95)(32 94)(33 93)(34 92)(35 91)(36 90)(37 89)(38 88)(39 87)(40 86)(41 61)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 73)(50 72)(51 71)(52 70)(53 69)(54 68)(55 67)(56 66)(57 65)(58 64)(59 63)(60 62)(121 144)(122 143)(123 142)(124 141)(125 160)(126 159)(127 158)(128 157)(129 156)(130 155)(131 154)(132 153)(133 152)(134 151)(135 150)(136 149)(137 148)(138 147)(139 146)(140 145)

G:=sub<Sym(160)| (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,125)(22,126)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,121)(38,122)(39,123)(40,124)(61,111)(62,112)(63,113)(64,114)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,156)(82,157)(83,158)(84,159)(85,160)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155), (1,30,11,40)(2,21,12,31)(3,32,13,22)(4,23,14,33)(5,34,15,24)(6,25,16,35)(7,36,17,26)(8,27,18,37)(9,38,19,28)(10,29,20,39)(41,130,51,140)(42,121,52,131)(43,132,53,122)(44,123,54,133)(45,134,55,124)(46,125,56,135)(47,136,57,126)(48,127,58,137)(49,138,59,128)(50,129,60,139)(61,145,71,155)(62,156,72,146)(63,147,73,157)(64,158,74,148)(65,149,75,159)(66,160,76,150)(67,151,77,141)(68,142,78,152)(69,153,79,143)(70,144,80,154)(81,102,91,112)(82,113,92,103)(83,104,93,114)(84,115,94,105)(85,106,95,116)(86,117,96,107)(87,108,97,118)(88,119,98,109)(89,110,99,120)(90,101,100,111), (1,142,11,152)(2,79,12,69)(3,144,13,154)(4,61,14,71)(5,146,15,156)(6,63,16,73)(7,148,17,158)(8,65,18,75)(9,150,19,160)(10,67,20,77)(21,153,31,143)(22,80,32,70)(23,155,33,145)(24,62,34,72)(25,157,35,147)(26,64,36,74)(27,159,37,149)(28,66,38,76)(29,141,39,151)(30,68,40,78)(41,83,51,93)(42,105,52,115)(43,85,53,95)(44,107,54,117)(45,87,55,97)(46,109,56,119)(47,89,57,99)(48,111,58,101)(49,91,59,81)(50,113,60,103)(82,139,92,129)(84,121,94,131)(86,123,96,133)(88,125,98,135)(90,127,100,137)(102,128,112,138)(104,130,114,140)(106,132,116,122)(108,134,118,124)(110,136,120,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107)(2,106)(3,105)(4,104)(5,103)(6,102)(7,101)(8,120)(9,119)(10,118)(11,117)(12,116)(13,115)(14,114)(15,113)(16,112)(17,111)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,100)(27,99)(28,98)(29,97)(30,96)(31,95)(32,94)(33,93)(34,92)(35,91)(36,90)(37,89)(38,88)(39,87)(40,86)(41,61)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(121,144)(122,143)(123,142)(124,141)(125,160)(126,159)(127,158)(128,157)(129,156)(130,155)(131,154)(132,153)(133,152)(134,151)(135,150)(136,149)(137,148)(138,147)(139,146)(140,145)>;

G:=Group( (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,125)(22,126)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,121)(38,122)(39,123)(40,124)(61,111)(62,112)(63,113)(64,114)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,156)(82,157)(83,158)(84,159)(85,160)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155), (1,30,11,40)(2,21,12,31)(3,32,13,22)(4,23,14,33)(5,34,15,24)(6,25,16,35)(7,36,17,26)(8,27,18,37)(9,38,19,28)(10,29,20,39)(41,130,51,140)(42,121,52,131)(43,132,53,122)(44,123,54,133)(45,134,55,124)(46,125,56,135)(47,136,57,126)(48,127,58,137)(49,138,59,128)(50,129,60,139)(61,145,71,155)(62,156,72,146)(63,147,73,157)(64,158,74,148)(65,149,75,159)(66,160,76,150)(67,151,77,141)(68,142,78,152)(69,153,79,143)(70,144,80,154)(81,102,91,112)(82,113,92,103)(83,104,93,114)(84,115,94,105)(85,106,95,116)(86,117,96,107)(87,108,97,118)(88,119,98,109)(89,110,99,120)(90,101,100,111), (1,142,11,152)(2,79,12,69)(3,144,13,154)(4,61,14,71)(5,146,15,156)(6,63,16,73)(7,148,17,158)(8,65,18,75)(9,150,19,160)(10,67,20,77)(21,153,31,143)(22,80,32,70)(23,155,33,145)(24,62,34,72)(25,157,35,147)(26,64,36,74)(27,159,37,149)(28,66,38,76)(29,141,39,151)(30,68,40,78)(41,83,51,93)(42,105,52,115)(43,85,53,95)(44,107,54,117)(45,87,55,97)(46,109,56,119)(47,89,57,99)(48,111,58,101)(49,91,59,81)(50,113,60,103)(82,139,92,129)(84,121,94,131)(86,123,96,133)(88,125,98,135)(90,127,100,137)(102,128,112,138)(104,130,114,140)(106,132,116,122)(108,134,118,124)(110,136,120,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107)(2,106)(3,105)(4,104)(5,103)(6,102)(7,101)(8,120)(9,119)(10,118)(11,117)(12,116)(13,115)(14,114)(15,113)(16,112)(17,111)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,100)(27,99)(28,98)(29,97)(30,96)(31,95)(32,94)(33,93)(34,92)(35,91)(36,90)(37,89)(38,88)(39,87)(40,86)(41,61)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(121,144)(122,143)(123,142)(124,141)(125,160)(126,159)(127,158)(128,157)(129,156)(130,155)(131,154)(132,153)(133,152)(134,151)(135,150)(136,149)(137,148)(138,147)(139,146)(140,145) );

G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,41),(18,42),(19,43),(20,44),(21,125),(22,126),(23,127),(24,128),(25,129),(26,130),(27,131),(28,132),(29,133),(30,134),(31,135),(32,136),(33,137),(34,138),(35,139),(36,140),(37,121),(38,122),(39,123),(40,124),(61,111),(62,112),(63,113),(64,114),(65,115),(66,116),(67,117),(68,118),(69,119),(70,120),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,156),(82,157),(83,158),(84,159),(85,160),(86,141),(87,142),(88,143),(89,144),(90,145),(91,146),(92,147),(93,148),(94,149),(95,150),(96,151),(97,152),(98,153),(99,154),(100,155)], [(1,30,11,40),(2,21,12,31),(3,32,13,22),(4,23,14,33),(5,34,15,24),(6,25,16,35),(7,36,17,26),(8,27,18,37),(9,38,19,28),(10,29,20,39),(41,130,51,140),(42,121,52,131),(43,132,53,122),(44,123,54,133),(45,134,55,124),(46,125,56,135),(47,136,57,126),(48,127,58,137),(49,138,59,128),(50,129,60,139),(61,145,71,155),(62,156,72,146),(63,147,73,157),(64,158,74,148),(65,149,75,159),(66,160,76,150),(67,151,77,141),(68,142,78,152),(69,153,79,143),(70,144,80,154),(81,102,91,112),(82,113,92,103),(83,104,93,114),(84,115,94,105),(85,106,95,116),(86,117,96,107),(87,108,97,118),(88,119,98,109),(89,110,99,120),(90,101,100,111)], [(1,142,11,152),(2,79,12,69),(3,144,13,154),(4,61,14,71),(5,146,15,156),(6,63,16,73),(7,148,17,158),(8,65,18,75),(9,150,19,160),(10,67,20,77),(21,153,31,143),(22,80,32,70),(23,155,33,145),(24,62,34,72),(25,157,35,147),(26,64,36,74),(27,159,37,149),(28,66,38,76),(29,141,39,151),(30,68,40,78),(41,83,51,93),(42,105,52,115),(43,85,53,95),(44,107,54,117),(45,87,55,97),(46,109,56,119),(47,89,57,99),(48,111,58,101),(49,91,59,81),(50,113,60,103),(82,139,92,129),(84,121,94,131),(86,123,96,133),(88,125,98,135),(90,127,100,137),(102,128,112,138),(104,130,114,140),(106,132,116,122),(108,134,118,124),(110,136,120,126)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,107),(2,106),(3,105),(4,104),(5,103),(6,102),(7,101),(8,120),(9,119),(10,118),(11,117),(12,116),(13,115),(14,114),(15,113),(16,112),(17,111),(18,110),(19,109),(20,108),(21,85),(22,84),(23,83),(24,82),(25,81),(26,100),(27,99),(28,98),(29,97),(30,96),(31,95),(32,94),(33,93),(34,92),(35,91),(36,90),(37,89),(38,88),(39,87),(40,86),(41,61),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,73),(50,72),(51,71),(52,70),(53,69),(54,68),(55,67),(56,66),(57,65),(58,64),(59,63),(60,62),(121,144),(122,143),(123,142),(124,141),(125,160),(126,159),(127,158),(128,157),(129,156),(130,155),(131,154),(132,153),(133,152),(134,151),(135,150),(136,149),(137,148),(138,147),(139,146),(140,145)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222222224444444444558888888810···102020202020···2040···40
size11111010202020202244445555222222101010102···244448···84···4

56 irreducible representations

dim111111122222222444
type+++++++++++++++++
imageC1C2C2C2C2C2C2D4D4D4D5D10D10D10C4○D8D4×D5D4×D5Q8.D10
kernelC2×Q8.D10D5×C2×C8C2×D40Q8.D10C2×Q8⋊D5C10×Q16C2×Q82D5C4×D5C2×Dic5C22×D5C2×Q16C2×C8Q16C2×Q8C10C4C22C2
# reps111821221122848228

Matrix representation of C2×Q8.D10 in GL4(𝔽41) generated by

40000
04000
00400
00040
,
1000
0100
00040
0010
,
40000
04000
00320
0009
,
63500
6100
001515
001526
,
04000
40000
001229
002929
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,32,0,0,0,0,9],[6,6,0,0,35,1,0,0,0,0,15,15,0,0,15,26],[0,40,0,0,40,0,0,0,0,0,12,29,0,0,29,29] >;

C2×Q8.D10 in GAP, Magma, Sage, TeX

C_2\times Q_8.D_{10}
% in TeX

G:=Group("C2xQ8.D10");
// GroupNames label

G:=SmallGroup(320,1437);
// by ID

G=gap.SmallGroup(320,1437);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,1123,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=e^2=1,c^2=d^10=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=b^-1*c,e*c*e=b*c,e*d*e=b^2*d^9>;
// generators/relations

׿
×
𝔽