Copied to
clipboard

G = C405D4order 320 = 26·5

5th semidirect product of C40 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C405D4, Dic51D8, (C2×D8)⋊3D5, (C10×D8)⋊5C2, C52C814D4, C87(C5⋊D4), C53(C84D4), C2.27(D5×D8), C4.20(D4×D5), (C2×D40)⋊18C2, C20⋊D44C2, (C8×Dic5)⋊5C2, C20.45(C2×D4), C10.44(C2×D8), (C2×D4).60D10, (C2×C8).236D10, (C2×C40).88C22, C22.252(D4×D5), C10.26(C41D4), C2.17(C20⋊D4), (C2×C20).428C23, (C2×Dic5).155D4, (D4×C10).78C22, (C2×D20).118C22, (C4×Dic5).269C22, C4.4(C2×C5⋊D4), (C2×D4⋊D5)⋊17C2, (C2×C10).341(C2×D4), (C2×C4).518(C22×D5), (C2×C52C8).277C22, SmallGroup(320,778)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C405D4
C1C5C10C20C2×C20C4×Dic5C20⋊D4 — C405D4
C5C10C2×C20 — C405D4
C1C22C2×C4C2×D8

Generators and relations for C405D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a9, cac=a-1, cbc=b-1 >

Subgroups: 878 in 162 conjugacy classes, 47 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, D5, C10, C10, C10, C42, C2×C8, C2×C8, D8, C2×D4, C2×D4, Dic5, C20, D10, C2×C10, C2×C10, C4×C8, C41D4, C2×D8, C2×D8, C52C8, C40, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C84D4, D40, C2×C52C8, C4×Dic5, D4⋊D5, C2×C40, C5×D8, C2×D20, C2×C5⋊D4, D4×C10, C8×Dic5, C2×D40, C2×D4⋊D5, C20⋊D4, C10×D8, C405D4
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C41D4, C2×D8, C5⋊D4, C22×D5, C84D4, D4×D5, C2×C5⋊D4, D5×D8, C20⋊D4, C405D4

Smallest permutation representation of C405D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 50 108 132)(2 59 109 141)(3 68 110 150)(4 77 111 159)(5 46 112 128)(6 55 113 137)(7 64 114 146)(8 73 115 155)(9 42 116 124)(10 51 117 133)(11 60 118 142)(12 69 119 151)(13 78 120 160)(14 47 81 129)(15 56 82 138)(16 65 83 147)(17 74 84 156)(18 43 85 125)(19 52 86 134)(20 61 87 143)(21 70 88 152)(22 79 89 121)(23 48 90 130)(24 57 91 139)(25 66 92 148)(26 75 93 157)(27 44 94 126)(28 53 95 135)(29 62 96 144)(30 71 97 153)(31 80 98 122)(32 49 99 131)(33 58 100 140)(34 67 101 149)(35 76 102 158)(36 45 103 127)(37 54 104 136)(38 63 105 145)(39 72 106 154)(40 41 107 123)
(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(41 141)(42 140)(43 139)(44 138)(45 137)(46 136)(47 135)(48 134)(49 133)(50 132)(51 131)(52 130)(53 129)(54 128)(55 127)(56 126)(57 125)(58 124)(59 123)(60 122)(61 121)(62 160)(63 159)(64 158)(65 157)(66 156)(67 155)(68 154)(69 153)(70 152)(71 151)(72 150)(73 149)(74 148)(75 147)(76 146)(77 145)(78 144)(79 143)(80 142)(81 95)(82 94)(83 93)(84 92)(85 91)(86 90)(87 89)(96 120)(97 119)(98 118)(99 117)(100 116)(101 115)(102 114)(103 113)(104 112)(105 111)(106 110)(107 109)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,50,108,132)(2,59,109,141)(3,68,110,150)(4,77,111,159)(5,46,112,128)(6,55,113,137)(7,64,114,146)(8,73,115,155)(9,42,116,124)(10,51,117,133)(11,60,118,142)(12,69,119,151)(13,78,120,160)(14,47,81,129)(15,56,82,138)(16,65,83,147)(17,74,84,156)(18,43,85,125)(19,52,86,134)(20,61,87,143)(21,70,88,152)(22,79,89,121)(23,48,90,130)(24,57,91,139)(25,66,92,148)(26,75,93,157)(27,44,94,126)(28,53,95,135)(29,62,96,144)(30,71,97,153)(31,80,98,122)(32,49,99,131)(33,58,100,140)(34,67,101,149)(35,76,102,158)(36,45,103,127)(37,54,104,136)(38,63,105,145)(39,72,106,154)(40,41,107,123), (2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(41,141)(42,140)(43,139)(44,138)(45,137)(46,136)(47,135)(48,134)(49,133)(50,132)(51,131)(52,130)(53,129)(54,128)(55,127)(56,126)(57,125)(58,124)(59,123)(60,122)(61,121)(62,160)(63,159)(64,158)(65,157)(66,156)(67,155)(68,154)(69,153)(70,152)(71,151)(72,150)(73,149)(74,148)(75,147)(76,146)(77,145)(78,144)(79,143)(80,142)(81,95)(82,94)(83,93)(84,92)(85,91)(86,90)(87,89)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,50,108,132)(2,59,109,141)(3,68,110,150)(4,77,111,159)(5,46,112,128)(6,55,113,137)(7,64,114,146)(8,73,115,155)(9,42,116,124)(10,51,117,133)(11,60,118,142)(12,69,119,151)(13,78,120,160)(14,47,81,129)(15,56,82,138)(16,65,83,147)(17,74,84,156)(18,43,85,125)(19,52,86,134)(20,61,87,143)(21,70,88,152)(22,79,89,121)(23,48,90,130)(24,57,91,139)(25,66,92,148)(26,75,93,157)(27,44,94,126)(28,53,95,135)(29,62,96,144)(30,71,97,153)(31,80,98,122)(32,49,99,131)(33,58,100,140)(34,67,101,149)(35,76,102,158)(36,45,103,127)(37,54,104,136)(38,63,105,145)(39,72,106,154)(40,41,107,123), (2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(41,141)(42,140)(43,139)(44,138)(45,137)(46,136)(47,135)(48,134)(49,133)(50,132)(51,131)(52,130)(53,129)(54,128)(55,127)(56,126)(57,125)(58,124)(59,123)(60,122)(61,121)(62,160)(63,159)(64,158)(65,157)(66,156)(67,155)(68,154)(69,153)(70,152)(71,151)(72,150)(73,149)(74,148)(75,147)(76,146)(77,145)(78,144)(79,143)(80,142)(81,95)(82,94)(83,93)(84,92)(85,91)(86,90)(87,89)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,50,108,132),(2,59,109,141),(3,68,110,150),(4,77,111,159),(5,46,112,128),(6,55,113,137),(7,64,114,146),(8,73,115,155),(9,42,116,124),(10,51,117,133),(11,60,118,142),(12,69,119,151),(13,78,120,160),(14,47,81,129),(15,56,82,138),(16,65,83,147),(17,74,84,156),(18,43,85,125),(19,52,86,134),(20,61,87,143),(21,70,88,152),(22,79,89,121),(23,48,90,130),(24,57,91,139),(25,66,92,148),(26,75,93,157),(27,44,94,126),(28,53,95,135),(29,62,96,144),(30,71,97,153),(31,80,98,122),(32,49,99,131),(33,58,100,140),(34,67,101,149),(35,76,102,158),(36,45,103,127),(37,54,104,136),(38,63,105,145),(39,72,106,154),(40,41,107,123)], [(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(41,141),(42,140),(43,139),(44,138),(45,137),(46,136),(47,135),(48,134),(49,133),(50,132),(51,131),(52,130),(53,129),(54,128),(55,127),(56,126),(57,125),(58,124),(59,123),(60,122),(61,121),(62,160),(63,159),(64,158),(65,157),(66,156),(67,155),(68,154),(69,153),(70,152),(71,151),(72,150),(73,149),(74,148),(75,147),(76,146),(77,145),(78,144),(79,143),(80,142),(81,95),(82,94),(83,93),(84,92),(85,91),(86,90),(87,89),(96,120),(97,119),(98,118),(99,117),(100,116),(101,115),(102,114),(103,113),(104,112),(105,111),(106,110),(107,109)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B8A8B8C8D8E8F8G8H10A···10F10G···10N20A20B20C20D40A···40H
order12222222444444558888888810···1010···102020202040···40
size11118840402210101010222222101010102···28···844444···4

50 irreducible representations

dim11111122222222444
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D5D8D10D10C5⋊D4D4×D5D4×D5D5×D8
kernelC405D4C8×Dic5C2×D40C2×D4⋊D5C20⋊D4C10×D8C52C8C40C2×Dic5C2×D8Dic5C2×C8C2×D4C8C4C22C2
# reps11122122228248228

Matrix representation of C405D4 in GL4(𝔽41) generated by

03500
7600
001715
00300
,
211500
172000
0010
0001
,
6600
13500
0010
001840
G:=sub<GL(4,GF(41))| [0,7,0,0,35,6,0,0,0,0,17,30,0,0,15,0],[21,17,0,0,15,20,0,0,0,0,1,0,0,0,0,1],[6,1,0,0,6,35,0,0,0,0,1,18,0,0,0,40] >;

C405D4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_5D_4
% in TeX

G:=Group("C40:5D4");
// GroupNames label

G:=SmallGroup(320,778);
// by ID

G=gap.SmallGroup(320,778);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,253,422,135,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^9,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽