Extensions 1→N→G→Q→1 with N=Dic5⋊Q8 and Q=C2

Direct product G=N×Q with N=Dic5⋊Q8 and Q=C2
dρLabelID
C2×Dic5⋊Q8320C2xDic5:Q8320,1482

Semidirect products G=N:Q with N=Dic5⋊Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic5⋊Q81C2 = D20.4D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8808-Dic5:Q8:1C2320,379
Dic5⋊Q82C2 = Dic5⋊SD16φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:2C2320,445
Dic5⋊Q83C2 = Dic53SD16φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:3C2320,789
Dic5⋊Q84C2 = C40.31D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:4C2320,794
Dic5⋊Q85C2 = C4015D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:5C2320,802
Dic5⋊Q86C2 = C40.37D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:6C2320,817
Dic5⋊Q87C2 = D20.40D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8808-Dic5:Q8:7C2320,832
Dic5⋊Q88C2 = 2- 1+4.2D5φ: C2/C1C2 ⊆ Out Dic5⋊Q8808-Dic5:Q8:8C2320,873
Dic5⋊Q89C2 = C42.122D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:9C2320,1240
Dic5⋊Q810C2 = C42.134D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:10C2320,1255
Dic5⋊Q811C2 = (Q8×Dic5)⋊C2φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:11C2320,1294
Dic5⋊Q812C2 = C10.502+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:12C2320,1295
Dic5⋊Q813C2 = C10.152- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:13C2320,1297
Dic5⋊Q814C2 = D2022D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:14C2320,1303
Dic5⋊Q815C2 = Dic1021D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:15C2320,1304
Dic5⋊Q816C2 = C10.522+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:16C2320,1308
Dic5⋊Q817C2 = C10.222- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:17C2320,1312
Dic5⋊Q818C2 = C10.582+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:18C2320,1318
Dic5⋊Q819C2 = C42.233D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:19C2320,1340
Dic5⋊Q820C2 = C42.137D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:20C2320,1341
Dic5⋊Q821C2 = C42.138D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:21C2320,1342
Dic5⋊Q822C2 = C42.139D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:22C2320,1343
Dic5⋊Q823C2 = C42.140D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:23C2320,1344
Dic5⋊Q824C2 = C42.141D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:24C2320,1347
Dic5⋊Q825C2 = D5×C4⋊Q8φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:25C2320,1395
Dic5⋊Q826C2 = C42.171D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:26C2320,1396
Dic5⋊Q827C2 = C42.174D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:27C2320,1401
Dic5⋊Q828C2 = C42.180D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:28C2320,1407
Dic5⋊Q829C2 = Q8×C5⋊D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:29C2320,1487
Dic5⋊Q830C2 = C10.442- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:30C2320,1488
Dic5⋊Q831C2 = C10.1042- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:31C2320,1496
Dic5⋊Q832C2 = C10.1052- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊Q8160Dic5:Q8:32C2320,1497
Dic5⋊Q833C2 = C42.232D10φ: trivial image160Dic5:Q8:33C2320,1250
Dic5⋊Q834C2 = (C2×C20)⋊17D4φ: trivial image160Dic5:Q8:34C2320,1504

Non-split extensions G=N.Q with N=Dic5⋊Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic5⋊Q8.1C2 = (C2×Q8).D10φ: C2/C1C2 ⊆ Out Dic5⋊Q8808-Dic5:Q8.1C2320,36
Dic5⋊Q8.2C2 = (Q8×C10).C4φ: C2/C1C2 ⊆ Out Dic5⋊Q8808-Dic5:Q8.2C2320,267
Dic5⋊Q8.3C2 = Dic5.Q16φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.3C2320,269
Dic5⋊Q8.4C2 = Dic5.3Q16φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.4C2320,419
Dic5⋊Q8.5C2 = Dic5⋊Q16φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.5C2320,420
Dic5⋊Q8.6C2 = C408C4.C2φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.6C2320,424
Dic5⋊Q8.7C2 = C40.26D4φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.7C2320,808
Dic5⋊Q8.8C2 = Dic53Q16φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.8C2320,809
Dic5⋊Q8.9C2 = Dic1010Q8φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.9C2320,1239
Dic5⋊Q8.10C2 = Dic108Q8φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.10C2320,1393
Dic5⋊Q8.11C2 = Dic109Q8φ: C2/C1C2 ⊆ Out Dic5⋊Q8320Dic5:Q8.11C2320,1394

׿
×
𝔽