Copied to
clipboard

## G = C10.222- 1+4order 320 = 26·5

### 22nd non-split extension by C10 of 2- 1+4 acting via 2- 1+4/C2×Q8=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2×C10 — C10.222- 1+4
 Chief series C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C4×D5 — D10⋊Q8 — C10.222- 1+4
 Lower central C5 — C2×C10 — C10.222- 1+4
 Upper central C1 — C22 — C22⋊Q8

Generators and relations for C10.222- 1+4
G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=a5b2, bab-1=dad-1=a-1, ac=ca, ae=ea, cbc-1=a5b-1, bd=db, ebe=a5b, cd=dc, ce=ec, ede=a5b2d >

Subgroups: 766 in 216 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C422C2, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×Q8, C22×D5, C22×C10, C22.36C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C2×C5⋊D4, C22×C20, Q8×C10, C23.D10, D10⋊D4, Dic5.5D4, Dic53Q8, C4⋊C47D5, D10.13D4, D10⋊Q8, C4⋊C4⋊D5, C4×C5⋊D4, C23.23D10, Dic5⋊Q8, C20.23D4, C5×C22⋊Q8, C10.222- 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, 2- 1+4, C22×D5, C22.36C24, C23×D5, D46D10, Q8.10D10, D5×C4○D4, C10.222- 1+4

Smallest permutation representation of C10.222- 1+4
On 160 points
Generators in S160
```(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 80 30 90)(2 79 21 89)(3 78 22 88)(4 77 23 87)(5 76 24 86)(6 75 25 85)(7 74 26 84)(8 73 27 83)(9 72 28 82)(10 71 29 81)(11 110 155 100)(12 109 156 99)(13 108 157 98)(14 107 158 97)(15 106 159 96)(16 105 160 95)(17 104 151 94)(18 103 152 93)(19 102 153 92)(20 101 154 91)(31 64 41 54)(32 63 42 53)(33 62 43 52)(34 61 44 51)(35 70 45 60)(36 69 46 59)(37 68 47 58)(38 67 48 57)(39 66 49 56)(40 65 50 55)(111 139 121 149)(112 138 122 148)(113 137 123 147)(114 136 124 146)(115 135 125 145)(116 134 126 144)(117 133 127 143)(118 132 128 142)(119 131 129 141)(120 140 130 150)
(1 95 6 100)(2 96 7 91)(3 97 8 92)(4 98 9 93)(5 99 10 94)(11 85 16 90)(12 86 17 81)(13 87 18 82)(14 88 19 83)(15 89 20 84)(21 106 26 101)(22 107 27 102)(23 108 28 103)(24 109 29 104)(25 110 30 105)(31 116 36 111)(32 117 37 112)(33 118 38 113)(34 119 39 114)(35 120 40 115)(41 126 46 121)(42 127 47 122)(43 128 48 123)(44 129 49 124)(45 130 50 125)(51 136 56 131)(52 137 57 132)(53 138 58 133)(54 139 59 134)(55 140 60 135)(61 146 66 141)(62 147 67 142)(63 148 68 143)(64 149 69 144)(65 150 70 145)(71 156 76 151)(72 157 77 152)(73 158 78 153)(74 159 79 154)(75 160 80 155)
(1 45 25 40)(2 44 26 39)(3 43 27 38)(4 42 28 37)(5 41 29 36)(6 50 30 35)(7 49 21 34)(8 48 22 33)(9 47 23 32)(10 46 24 31)(11 145 160 140)(12 144 151 139)(13 143 152 138)(14 142 153 137)(15 141 154 136)(16 150 155 135)(17 149 156 134)(18 148 157 133)(19 147 158 132)(20 146 159 131)(51 84 66 79)(52 83 67 78)(53 82 68 77)(54 81 69 76)(55 90 70 75)(56 89 61 74)(57 88 62 73)(58 87 63 72)(59 86 64 71)(60 85 65 80)(91 124 106 119)(92 123 107 118)(93 122 108 117)(94 121 109 116)(95 130 110 115)(96 129 101 114)(97 128 102 113)(98 127 103 112)(99 126 104 111)(100 125 105 120)
(1 40)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 135)(12 136)(13 137)(14 138)(15 139)(16 140)(17 131)(18 132)(19 133)(20 134)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 87)(58 88)(59 89)(60 90)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)```

`G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,80,30,90)(2,79,21,89)(3,78,22,88)(4,77,23,87)(5,76,24,86)(6,75,25,85)(7,74,26,84)(8,73,27,83)(9,72,28,82)(10,71,29,81)(11,110,155,100)(12,109,156,99)(13,108,157,98)(14,107,158,97)(15,106,159,96)(16,105,160,95)(17,104,151,94)(18,103,152,93)(19,102,153,92)(20,101,154,91)(31,64,41,54)(32,63,42,53)(33,62,43,52)(34,61,44,51)(35,70,45,60)(36,69,46,59)(37,68,47,58)(38,67,48,57)(39,66,49,56)(40,65,50,55)(111,139,121,149)(112,138,122,148)(113,137,123,147)(114,136,124,146)(115,135,125,145)(116,134,126,144)(117,133,127,143)(118,132,128,142)(119,131,129,141)(120,140,130,150), (1,95,6,100)(2,96,7,91)(3,97,8,92)(4,98,9,93)(5,99,10,94)(11,85,16,90)(12,86,17,81)(13,87,18,82)(14,88,19,83)(15,89,20,84)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,45,25,40)(2,44,26,39)(3,43,27,38)(4,42,28,37)(5,41,29,36)(6,50,30,35)(7,49,21,34)(8,48,22,33)(9,47,23,32)(10,46,24,31)(11,145,160,140)(12,144,151,139)(13,143,152,138)(14,142,153,137)(15,141,154,136)(16,150,155,135)(17,149,156,134)(18,148,157,133)(19,147,158,132)(20,146,159,131)(51,84,66,79)(52,83,67,78)(53,82,68,77)(54,81,69,76)(55,90,70,75)(56,89,61,74)(57,88,62,73)(58,87,63,72)(59,86,64,71)(60,85,65,80)(91,124,106,119)(92,123,107,118)(93,122,108,117)(94,121,109,116)(95,130,110,115)(96,129,101,114)(97,128,102,113)(98,127,103,112)(99,126,104,111)(100,125,105,120), (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,135)(12,136)(13,137)(14,138)(15,139)(16,140)(17,131)(18,132)(19,133)(20,134)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,80,30,90)(2,79,21,89)(3,78,22,88)(4,77,23,87)(5,76,24,86)(6,75,25,85)(7,74,26,84)(8,73,27,83)(9,72,28,82)(10,71,29,81)(11,110,155,100)(12,109,156,99)(13,108,157,98)(14,107,158,97)(15,106,159,96)(16,105,160,95)(17,104,151,94)(18,103,152,93)(19,102,153,92)(20,101,154,91)(31,64,41,54)(32,63,42,53)(33,62,43,52)(34,61,44,51)(35,70,45,60)(36,69,46,59)(37,68,47,58)(38,67,48,57)(39,66,49,56)(40,65,50,55)(111,139,121,149)(112,138,122,148)(113,137,123,147)(114,136,124,146)(115,135,125,145)(116,134,126,144)(117,133,127,143)(118,132,128,142)(119,131,129,141)(120,140,130,150), (1,95,6,100)(2,96,7,91)(3,97,8,92)(4,98,9,93)(5,99,10,94)(11,85,16,90)(12,86,17,81)(13,87,18,82)(14,88,19,83)(15,89,20,84)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,45,25,40)(2,44,26,39)(3,43,27,38)(4,42,28,37)(5,41,29,36)(6,50,30,35)(7,49,21,34)(8,48,22,33)(9,47,23,32)(10,46,24,31)(11,145,160,140)(12,144,151,139)(13,143,152,138)(14,142,153,137)(15,141,154,136)(16,150,155,135)(17,149,156,134)(18,148,157,133)(19,147,158,132)(20,146,159,131)(51,84,66,79)(52,83,67,78)(53,82,68,77)(54,81,69,76)(55,90,70,75)(56,89,61,74)(57,88,62,73)(58,87,63,72)(59,86,64,71)(60,85,65,80)(91,124,106,119)(92,123,107,118)(93,122,108,117)(94,121,109,116)(95,130,110,115)(96,129,101,114)(97,128,102,113)(98,127,103,112)(99,126,104,111)(100,125,105,120), (1,40)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,135)(12,136)(13,137)(14,138)(15,139)(16,140)(17,131)(18,132)(19,133)(20,134)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160) );`

`G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,80,30,90),(2,79,21,89),(3,78,22,88),(4,77,23,87),(5,76,24,86),(6,75,25,85),(7,74,26,84),(8,73,27,83),(9,72,28,82),(10,71,29,81),(11,110,155,100),(12,109,156,99),(13,108,157,98),(14,107,158,97),(15,106,159,96),(16,105,160,95),(17,104,151,94),(18,103,152,93),(19,102,153,92),(20,101,154,91),(31,64,41,54),(32,63,42,53),(33,62,43,52),(34,61,44,51),(35,70,45,60),(36,69,46,59),(37,68,47,58),(38,67,48,57),(39,66,49,56),(40,65,50,55),(111,139,121,149),(112,138,122,148),(113,137,123,147),(114,136,124,146),(115,135,125,145),(116,134,126,144),(117,133,127,143),(118,132,128,142),(119,131,129,141),(120,140,130,150)], [(1,95,6,100),(2,96,7,91),(3,97,8,92),(4,98,9,93),(5,99,10,94),(11,85,16,90),(12,86,17,81),(13,87,18,82),(14,88,19,83),(15,89,20,84),(21,106,26,101),(22,107,27,102),(23,108,28,103),(24,109,29,104),(25,110,30,105),(31,116,36,111),(32,117,37,112),(33,118,38,113),(34,119,39,114),(35,120,40,115),(41,126,46,121),(42,127,47,122),(43,128,48,123),(44,129,49,124),(45,130,50,125),(51,136,56,131),(52,137,57,132),(53,138,58,133),(54,139,59,134),(55,140,60,135),(61,146,66,141),(62,147,67,142),(63,148,68,143),(64,149,69,144),(65,150,70,145),(71,156,76,151),(72,157,77,152),(73,158,78,153),(74,159,79,154),(75,160,80,155)], [(1,45,25,40),(2,44,26,39),(3,43,27,38),(4,42,28,37),(5,41,29,36),(6,50,30,35),(7,49,21,34),(8,48,22,33),(9,47,23,32),(10,46,24,31),(11,145,160,140),(12,144,151,139),(13,143,152,138),(14,142,153,137),(15,141,154,136),(16,150,155,135),(17,149,156,134),(18,148,157,133),(19,147,158,132),(20,146,159,131),(51,84,66,79),(52,83,67,78),(53,82,68,77),(54,81,69,76),(55,90,70,75),(56,89,61,74),(57,88,62,73),(58,87,63,72),(59,86,64,71),(60,85,65,80),(91,124,106,119),(92,123,107,118),(93,122,108,117),(94,121,109,116),(95,130,110,115),(96,129,101,114),(97,128,102,113),(98,127,103,112),(99,126,104,111),(100,125,105,120)], [(1,40),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,135),(12,136),(13,137),(14,138),(15,139),(16,140),(17,131),(18,132),(19,133),(20,134),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,87),(58,88),(59,89),(60,90),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)]])`

50 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 4A 4B 4C ··· 4G 4H 4I 4J 4K 4L 4M 4N 4O 5A 5B 10A ··· 10F 10G 10H 10I 10J 20A ··· 20H 20I ··· 20P order 1 2 2 2 2 2 2 4 4 4 ··· 4 4 4 4 4 4 4 4 4 5 5 10 ··· 10 10 10 10 10 20 ··· 20 20 ··· 20 size 1 1 1 1 4 20 20 2 2 4 ··· 4 10 10 10 10 20 20 20 20 2 2 2 ··· 2 4 4 4 4 4 ··· 4 8 ··· 8

50 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4 4 type + + + + + + + + + + + + + + + + + + + + - image C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 D5 C4○D4 D10 D10 D10 D10 2+ 1+4 2- 1+4 D4⋊6D10 Q8.10D10 D5×C4○D4 kernel C10.222- 1+4 C23.D10 D10⋊D4 Dic5.5D4 Dic5⋊3Q8 C4⋊C4⋊7D5 D10.13D4 D10⋊Q8 C4⋊C4⋊D5 C4×C5⋊D4 C23.23D10 Dic5⋊Q8 C20.23D4 C5×C22⋊Q8 C22⋊Q8 Dic5 C22⋊C4 C4⋊C4 C22×C4 C2×Q8 C10 C10 C2 C2 C2 # reps 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 4 4 6 2 2 1 1 4 4 4

Matrix representation of C10.222- 1+4 in GL6(𝔽41)

 40 0 0 0 0 0 0 40 0 0 0 0 0 0 34 34 0 0 0 0 7 1 0 0 0 0 0 0 34 34 0 0 0 0 7 1
,
 3 37 0 0 0 0 23 38 0 0 0 0 0 0 0 0 17 40 0 0 0 0 3 24 0 0 24 1 0 0 0 0 38 17 0 0
,
 9 0 0 0 0 0 0 9 0 0 0 0 0 0 27 0 34 0 0 0 0 27 0 34 0 0 34 0 14 0 0 0 0 34 0 14
,
 40 0 0 0 0 0 0 40 0 0 0 0 0 0 17 40 0 0 0 0 3 24 0 0 0 0 0 0 17 40 0 0 0 0 3 24
,
 40 0 0 0 0 0 19 1 0 0 0 0 0 0 17 40 0 0 0 0 1 24 0 0 0 0 0 0 17 40 0 0 0 0 1 24

`G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,0,0,0,0,34,7,0,0,0,0,34,1],[3,23,0,0,0,0,37,38,0,0,0,0,0,0,0,0,24,38,0,0,0,0,1,17,0,0,17,3,0,0,0,0,40,24,0,0],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,27,0,34,0,0,0,0,27,0,34,0,0,34,0,14,0,0,0,0,34,0,14],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,17,3,0,0,0,0,40,24,0,0,0,0,0,0,17,3,0,0,0,0,40,24],[40,19,0,0,0,0,0,1,0,0,0,0,0,0,17,1,0,0,0,0,40,24,0,0,0,0,0,0,17,1,0,0,0,0,40,24] >;`

C10.222- 1+4 in GAP, Magma, Sage, TeX

`C_{10}._{22}2_-^{1+4}`
`% in TeX`

`G:=Group("C10.22ES-(2,2)");`
`// GroupNames label`

`G:=SmallGroup(320,1312);`
`// by ID`

`G=gap.SmallGroup(320,1312);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,555,100,1571,297,12550]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=a^5*b^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,a*e=e*a,c*b*c^-1=a^5*b^-1,b*d=d*b,e*b*e=a^5*b,c*d=d*c,c*e=e*c,e*d*e=a^5*b^2*d>;`
`// generators/relations`

׿
×
𝔽