Copied to
clipboard

G = C40.37D4order 320 = 26·5

37th non-split extension by C40 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.37D4, (C2×Q16)⋊9D5, C4.28(D4×D5), C408C410C2, (C2×C8).96D10, C52C8.10D4, C8.6(C5⋊D4), C55(C8.2D4), (C10×Q16)⋊10C2, C20.188(C2×D4), (C2×Q8).66D10, Dic5⋊Q86C2, (C2×Dic5).86D4, C22.281(D4×D5), C2.25(C20⋊D4), C10.34(C41D4), (C2×C40).151C22, (C2×C20).464C23, C20.23D4.8C2, (Q8×C10).93C22, C2.31(Q16⋊D5), (C2×D20).130C22, C10.81(C8.C22), (C4×Dic5).62C22, (C2×Dic10).137C22, C4.15(C2×C5⋊D4), (C2×Q8⋊D5).9C2, (C2×C5⋊Q16)⋊21C2, (C2×C40⋊C2).8C2, (C2×C10).375(C2×D4), (C2×C4).552(C22×D5), (C2×C52C8).168C22, SmallGroup(320,817)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C40.37D4
C1C5C10C2×C10C2×C20C2×D20C2×C40⋊C2 — C40.37D4
C5C10C2×C20 — C40.37D4
C1C22C2×C4C2×Q16

Generators and relations for C40.37D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a29, cac=a19, cbc=a20b-1 >

Subgroups: 526 in 124 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, C8⋊C4, C4.4D4, C4⋊Q8, C2×SD16, C2×Q16, C2×Q16, C52C8, C40, Dic10, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C8.2D4, C40⋊C2, C2×C52C8, C4×Dic5, C10.D4, D10⋊C4, Q8⋊D5, C5⋊Q16, C2×C40, C5×Q16, C2×Dic10, C2×D20, Q8×C10, C408C4, C2×C40⋊C2, C2×Q8⋊D5, C2×C5⋊Q16, Dic5⋊Q8, C20.23D4, C10×Q16, C40.37D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C41D4, C8.C22, C5⋊D4, C22×D5, C8.2D4, D4×D5, C2×C5⋊D4, Q16⋊D5, C20⋊D4, C40.37D4

Smallest permutation representation of C40.37D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 137 78 115)(2 126 79 104)(3 155 80 93)(4 144 41 82)(5 133 42 111)(6 122 43 100)(7 151 44 89)(8 140 45 118)(9 129 46 107)(10 158 47 96)(11 147 48 85)(12 136 49 114)(13 125 50 103)(14 154 51 92)(15 143 52 81)(16 132 53 110)(17 121 54 99)(18 150 55 88)(19 139 56 117)(20 128 57 106)(21 157 58 95)(22 146 59 84)(23 135 60 113)(24 124 61 102)(25 153 62 91)(26 142 63 120)(27 131 64 109)(28 160 65 98)(29 149 66 87)(30 138 67 116)(31 127 68 105)(32 156 69 94)(33 145 70 83)(34 134 71 112)(35 123 72 101)(36 152 73 90)(37 141 74 119)(38 130 75 108)(39 159 76 97)(40 148 77 86)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)(41 55)(42 74)(43 53)(44 72)(45 51)(46 70)(47 49)(48 68)(50 66)(52 64)(54 62)(56 60)(57 79)(59 77)(61 75)(63 73)(65 71)(67 69)(76 80)(81 151)(82 130)(83 149)(84 128)(85 147)(86 126)(87 145)(88 124)(89 143)(90 122)(91 141)(92 160)(93 139)(94 158)(95 137)(96 156)(97 135)(98 154)(99 133)(100 152)(101 131)(102 150)(103 129)(104 148)(105 127)(106 146)(107 125)(108 144)(109 123)(110 142)(111 121)(112 140)(113 159)(114 138)(115 157)(116 136)(117 155)(118 134)(119 153)(120 132)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,137,78,115)(2,126,79,104)(3,155,80,93)(4,144,41,82)(5,133,42,111)(6,122,43,100)(7,151,44,89)(8,140,45,118)(9,129,46,107)(10,158,47,96)(11,147,48,85)(12,136,49,114)(13,125,50,103)(14,154,51,92)(15,143,52,81)(16,132,53,110)(17,121,54,99)(18,150,55,88)(19,139,56,117)(20,128,57,106)(21,157,58,95)(22,146,59,84)(23,135,60,113)(24,124,61,102)(25,153,62,91)(26,142,63,120)(27,131,64,109)(28,160,65,98)(29,149,66,87)(30,138,67,116)(31,127,68,105)(32,156,69,94)(33,145,70,83)(34,134,71,112)(35,123,72,101)(36,152,73,90)(37,141,74,119)(38,130,75,108)(39,159,76,97)(40,148,77,86), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,55)(42,74)(43,53)(44,72)(45,51)(46,70)(47,49)(48,68)(50,66)(52,64)(54,62)(56,60)(57,79)(59,77)(61,75)(63,73)(65,71)(67,69)(76,80)(81,151)(82,130)(83,149)(84,128)(85,147)(86,126)(87,145)(88,124)(89,143)(90,122)(91,141)(92,160)(93,139)(94,158)(95,137)(96,156)(97,135)(98,154)(99,133)(100,152)(101,131)(102,150)(103,129)(104,148)(105,127)(106,146)(107,125)(108,144)(109,123)(110,142)(111,121)(112,140)(113,159)(114,138)(115,157)(116,136)(117,155)(118,134)(119,153)(120,132)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,137,78,115)(2,126,79,104)(3,155,80,93)(4,144,41,82)(5,133,42,111)(6,122,43,100)(7,151,44,89)(8,140,45,118)(9,129,46,107)(10,158,47,96)(11,147,48,85)(12,136,49,114)(13,125,50,103)(14,154,51,92)(15,143,52,81)(16,132,53,110)(17,121,54,99)(18,150,55,88)(19,139,56,117)(20,128,57,106)(21,157,58,95)(22,146,59,84)(23,135,60,113)(24,124,61,102)(25,153,62,91)(26,142,63,120)(27,131,64,109)(28,160,65,98)(29,149,66,87)(30,138,67,116)(31,127,68,105)(32,156,69,94)(33,145,70,83)(34,134,71,112)(35,123,72,101)(36,152,73,90)(37,141,74,119)(38,130,75,108)(39,159,76,97)(40,148,77,86), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,55)(42,74)(43,53)(44,72)(45,51)(46,70)(47,49)(48,68)(50,66)(52,64)(54,62)(56,60)(57,79)(59,77)(61,75)(63,73)(65,71)(67,69)(76,80)(81,151)(82,130)(83,149)(84,128)(85,147)(86,126)(87,145)(88,124)(89,143)(90,122)(91,141)(92,160)(93,139)(94,158)(95,137)(96,156)(97,135)(98,154)(99,133)(100,152)(101,131)(102,150)(103,129)(104,148)(105,127)(106,146)(107,125)(108,144)(109,123)(110,142)(111,121)(112,140)(113,159)(114,138)(115,157)(116,136)(117,155)(118,134)(119,153)(120,132) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,137,78,115),(2,126,79,104),(3,155,80,93),(4,144,41,82),(5,133,42,111),(6,122,43,100),(7,151,44,89),(8,140,45,118),(9,129,46,107),(10,158,47,96),(11,147,48,85),(12,136,49,114),(13,125,50,103),(14,154,51,92),(15,143,52,81),(16,132,53,110),(17,121,54,99),(18,150,55,88),(19,139,56,117),(20,128,57,106),(21,157,58,95),(22,146,59,84),(23,135,60,113),(24,124,61,102),(25,153,62,91),(26,142,63,120),(27,131,64,109),(28,160,65,98),(29,149,66,87),(30,138,67,116),(31,127,68,105),(32,156,69,94),(33,145,70,83),(34,134,71,112),(35,123,72,101),(36,152,73,90),(37,141,74,119),(38,130,75,108),(39,159,76,97),(40,148,77,86)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32),(41,55),(42,74),(43,53),(44,72),(45,51),(46,70),(47,49),(48,68),(50,66),(52,64),(54,62),(56,60),(57,79),(59,77),(61,75),(63,73),(65,71),(67,69),(76,80),(81,151),(82,130),(83,149),(84,128),(85,147),(86,126),(87,145),(88,124),(89,143),(90,122),(91,141),(92,160),(93,139),(94,158),(95,137),(96,156),(97,135),(98,154),(99,133),(100,152),(101,131),(102,150),(103,129),(104,148),(105,127),(106,146),(107,125),(108,144),(109,123),(110,142),(111,121),(112,140),(113,159),(114,138),(115,157),(116,136),(117,155),(118,134),(119,153),(120,132)]])

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222444444455888810···102020202020···2040···40
size1111402288202040224420202···244448···84···4

44 irreducible representations

dim1111111122222224444
type++++++++++++++-++
imageC1C2C2C2C2C2C2C2D4D4D4D5D10D10C5⋊D4C8.C22D4×D5D4×D5Q16⋊D5
kernelC40.37D4C408C4C2×C40⋊C2C2×Q8⋊D5C2×C5⋊Q16Dic5⋊Q8C20.23D4C10×Q16C52C8C40C2×Dic5C2×Q16C2×C8C2×Q8C8C10C4C22C2
# reps1111111122222482228

Matrix representation of C40.37D4 in GL8(𝔽41)

10000000
01000000
003570000
003500000
0000173677
00001018024
0000192133
00002921213
,
040000000
10000000
0035400000
003560000
000010370
00002104040
0000210400
000001400
,
10000000
040000000
00610000
006350000
00001000
0000214000
00000010
0000210040

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,35,35,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,17,10,19,29,0,0,0,0,36,18,21,21,0,0,0,0,7,0,3,21,0,0,0,0,7,24,3,3],[0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,35,35,0,0,0,0,0,0,40,6,0,0,0,0,0,0,0,0,1,21,21,0,0,0,0,0,0,0,0,1,0,0,0,0,37,40,40,40,0,0,0,0,0,40,0,0],[1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,1,35,0,0,0,0,0,0,0,0,1,21,0,21,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40] >;

C40.37D4 in GAP, Magma, Sage, TeX

C_{40}._{37}D_4
% in TeX

G:=Group("C40.37D4");
// GroupNames label

G:=SmallGroup(320,817);
// by ID

G=gap.SmallGroup(320,817);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,254,219,184,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^29,c*a*c=a^19,c*b*c=a^20*b^-1>;
// generators/relations

׿
×
𝔽