Copied to
clipboard

G = D2022D4order 320 = 26·5

10th semidirect product of D20 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2022D4, C10.182- 1+4, C22⋊Q88D5, C55(D46D4), C4.112(D4×D5), C4⋊C4.189D10, D10.44(C2×D4), C20.235(C2×D4), D10⋊D425C2, D208C426C2, D102Q825C2, Dic55(C4○D4), (C2×Q8).126D10, C22⋊C4.16D10, C10.77(C22×D4), Dic5⋊Q814C2, (C2×C20).503C23, (C2×C10).175C24, (C22×C4).237D10, D10.12D425C2, D10.13D418C2, (C2×D20).155C22, C4⋊Dic5.215C22, (Q8×C10).107C22, C23.119(C22×D5), C22.196(C23×D5), D10⋊C4.23C22, (C22×C10).203C23, (C22×C20).255C22, (C4×Dic5).113C22, (C2×Dic5).244C23, C10.D4.27C22, (C22×D5).207C23, C23.D5.116C22, C2.19(Q8.10D10), (C2×Dic10).302C22, C2.50(C2×D4×D5), (D5×C4⋊C4)⋊26C2, (C4×C5⋊D4)⋊23C2, C2.49(D5×C4○D4), (C2×C4○D20)⋊24C2, (C2×Q82D5)⋊8C2, (C5×C22⋊Q8)⋊11C2, C10.161(C2×C4○D4), (C2×C4×D5).104C22, (C2×C4).48(C22×D5), (C5×C4⋊C4).158C22, (C2×C5⋊D4).131C22, (C5×C22⋊C4).30C22, SmallGroup(320,1303)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D2022D4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D2022D4
C5C2×C10 — D2022D4
C1C22C22⋊Q8

Generators and relations for D2022D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, cac-1=dad=a9, cbc-1=a8b, dbd=a18b, dcd=c-1 >

Subgroups: 1078 in 292 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, Dic10, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×Q8, C22×D5, C22×D5, C22×C10, D46D4, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, C4○D20, Q82D5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, Q8×C10, D10.12D4, D10⋊D4, D5×C4⋊C4, D208C4, D10.13D4, D102Q8, C4×C5⋊D4, Dic5⋊Q8, C5×C22⋊Q8, C2×C4○D20, C2×Q82D5, D2022D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2- 1+4, C22×D5, D46D4, D4×D5, C23×D5, C2×D4×D5, Q8.10D10, D5×C4○D4, D2022D4

Smallest permutation representation of D2022D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 37)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)(17 21)(18 40)(19 39)(20 38)(41 85)(42 84)(43 83)(44 82)(45 81)(46 100)(47 99)(48 98)(49 97)(50 96)(51 95)(52 94)(53 93)(54 92)(55 91)(56 90)(57 89)(58 88)(59 87)(60 86)(61 116)(62 115)(63 114)(64 113)(65 112)(66 111)(67 110)(68 109)(69 108)(70 107)(71 106)(72 105)(73 104)(74 103)(75 102)(76 101)(77 120)(78 119)(79 118)(80 117)(121 148)(122 147)(123 146)(124 145)(125 144)(126 143)(127 142)(128 141)(129 160)(130 159)(131 158)(132 157)(133 156)(134 155)(135 154)(136 153)(137 152)(138 151)(139 150)(140 149)
(1 152 59 67)(2 141 60 76)(3 150 41 65)(4 159 42 74)(5 148 43 63)(6 157 44 72)(7 146 45 61)(8 155 46 70)(9 144 47 79)(10 153 48 68)(11 142 49 77)(12 151 50 66)(13 160 51 75)(14 149 52 64)(15 158 53 73)(16 147 54 62)(17 156 55 71)(18 145 56 80)(19 154 57 69)(20 143 58 78)(21 125 91 118)(22 134 92 107)(23 123 93 116)(24 132 94 105)(25 121 95 114)(26 130 96 103)(27 139 97 112)(28 128 98 101)(29 137 99 110)(30 126 100 119)(31 135 81 108)(32 124 82 117)(33 133 83 106)(34 122 84 115)(35 131 85 104)(36 140 86 113)(37 129 87 102)(38 138 88 111)(39 127 89 120)(40 136 90 109)
(2 10)(3 19)(4 8)(5 17)(7 15)(9 13)(12 20)(14 18)(21 35)(22 24)(23 33)(25 31)(26 40)(27 29)(28 38)(30 36)(32 34)(37 39)(41 57)(42 46)(43 55)(45 53)(47 51)(48 60)(50 58)(52 56)(61 158)(62 147)(63 156)(64 145)(65 154)(66 143)(67 152)(68 141)(69 150)(70 159)(71 148)(72 157)(73 146)(74 155)(75 144)(76 153)(77 142)(78 151)(79 160)(80 149)(81 95)(82 84)(83 93)(85 91)(86 100)(87 89)(88 98)(90 96)(92 94)(97 99)(101 138)(102 127)(103 136)(104 125)(105 134)(106 123)(107 132)(108 121)(109 130)(110 139)(111 128)(112 137)(113 126)(114 135)(115 124)(116 133)(117 122)(118 131)(119 140)(120 129)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,40)(19,39)(20,38)(41,85)(42,84)(43,83)(44,82)(45,81)(46,100)(47,99)(48,98)(49,97)(50,96)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,89)(58,88)(59,87)(60,86)(61,116)(62,115)(63,114)(64,113)(65,112)(66,111)(67,110)(68,109)(69,108)(70,107)(71,106)(72,105)(73,104)(74,103)(75,102)(76,101)(77,120)(78,119)(79,118)(80,117)(121,148)(122,147)(123,146)(124,145)(125,144)(126,143)(127,142)(128,141)(129,160)(130,159)(131,158)(132,157)(133,156)(134,155)(135,154)(136,153)(137,152)(138,151)(139,150)(140,149), (1,152,59,67)(2,141,60,76)(3,150,41,65)(4,159,42,74)(5,148,43,63)(6,157,44,72)(7,146,45,61)(8,155,46,70)(9,144,47,79)(10,153,48,68)(11,142,49,77)(12,151,50,66)(13,160,51,75)(14,149,52,64)(15,158,53,73)(16,147,54,62)(17,156,55,71)(18,145,56,80)(19,154,57,69)(20,143,58,78)(21,125,91,118)(22,134,92,107)(23,123,93,116)(24,132,94,105)(25,121,95,114)(26,130,96,103)(27,139,97,112)(28,128,98,101)(29,137,99,110)(30,126,100,119)(31,135,81,108)(32,124,82,117)(33,133,83,106)(34,122,84,115)(35,131,85,104)(36,140,86,113)(37,129,87,102)(38,138,88,111)(39,127,89,120)(40,136,90,109), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,35)(22,24)(23,33)(25,31)(26,40)(27,29)(28,38)(30,36)(32,34)(37,39)(41,57)(42,46)(43,55)(45,53)(47,51)(48,60)(50,58)(52,56)(61,158)(62,147)(63,156)(64,145)(65,154)(66,143)(67,152)(68,141)(69,150)(70,159)(71,148)(72,157)(73,146)(74,155)(75,144)(76,153)(77,142)(78,151)(79,160)(80,149)(81,95)(82,84)(83,93)(85,91)(86,100)(87,89)(88,98)(90,96)(92,94)(97,99)(101,138)(102,127)(103,136)(104,125)(105,134)(106,123)(107,132)(108,121)(109,130)(110,139)(111,128)(112,137)(113,126)(114,135)(115,124)(116,133)(117,122)(118,131)(119,140)(120,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,37)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,40)(19,39)(20,38)(41,85)(42,84)(43,83)(44,82)(45,81)(46,100)(47,99)(48,98)(49,97)(50,96)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,89)(58,88)(59,87)(60,86)(61,116)(62,115)(63,114)(64,113)(65,112)(66,111)(67,110)(68,109)(69,108)(70,107)(71,106)(72,105)(73,104)(74,103)(75,102)(76,101)(77,120)(78,119)(79,118)(80,117)(121,148)(122,147)(123,146)(124,145)(125,144)(126,143)(127,142)(128,141)(129,160)(130,159)(131,158)(132,157)(133,156)(134,155)(135,154)(136,153)(137,152)(138,151)(139,150)(140,149), (1,152,59,67)(2,141,60,76)(3,150,41,65)(4,159,42,74)(5,148,43,63)(6,157,44,72)(7,146,45,61)(8,155,46,70)(9,144,47,79)(10,153,48,68)(11,142,49,77)(12,151,50,66)(13,160,51,75)(14,149,52,64)(15,158,53,73)(16,147,54,62)(17,156,55,71)(18,145,56,80)(19,154,57,69)(20,143,58,78)(21,125,91,118)(22,134,92,107)(23,123,93,116)(24,132,94,105)(25,121,95,114)(26,130,96,103)(27,139,97,112)(28,128,98,101)(29,137,99,110)(30,126,100,119)(31,135,81,108)(32,124,82,117)(33,133,83,106)(34,122,84,115)(35,131,85,104)(36,140,86,113)(37,129,87,102)(38,138,88,111)(39,127,89,120)(40,136,90,109), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,35)(22,24)(23,33)(25,31)(26,40)(27,29)(28,38)(30,36)(32,34)(37,39)(41,57)(42,46)(43,55)(45,53)(47,51)(48,60)(50,58)(52,56)(61,158)(62,147)(63,156)(64,145)(65,154)(66,143)(67,152)(68,141)(69,150)(70,159)(71,148)(72,157)(73,146)(74,155)(75,144)(76,153)(77,142)(78,151)(79,160)(80,149)(81,95)(82,84)(83,93)(85,91)(86,100)(87,89)(88,98)(90,96)(92,94)(97,99)(101,138)(102,127)(103,136)(104,125)(105,134)(106,123)(107,132)(108,121)(109,130)(110,139)(111,128)(112,137)(113,126)(114,135)(115,124)(116,133)(117,122)(118,131)(119,140)(120,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,37),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22),(17,21),(18,40),(19,39),(20,38),(41,85),(42,84),(43,83),(44,82),(45,81),(46,100),(47,99),(48,98),(49,97),(50,96),(51,95),(52,94),(53,93),(54,92),(55,91),(56,90),(57,89),(58,88),(59,87),(60,86),(61,116),(62,115),(63,114),(64,113),(65,112),(66,111),(67,110),(68,109),(69,108),(70,107),(71,106),(72,105),(73,104),(74,103),(75,102),(76,101),(77,120),(78,119),(79,118),(80,117),(121,148),(122,147),(123,146),(124,145),(125,144),(126,143),(127,142),(128,141),(129,160),(130,159),(131,158),(132,157),(133,156),(134,155),(135,154),(136,153),(137,152),(138,151),(139,150),(140,149)], [(1,152,59,67),(2,141,60,76),(3,150,41,65),(4,159,42,74),(5,148,43,63),(6,157,44,72),(7,146,45,61),(8,155,46,70),(9,144,47,79),(10,153,48,68),(11,142,49,77),(12,151,50,66),(13,160,51,75),(14,149,52,64),(15,158,53,73),(16,147,54,62),(17,156,55,71),(18,145,56,80),(19,154,57,69),(20,143,58,78),(21,125,91,118),(22,134,92,107),(23,123,93,116),(24,132,94,105),(25,121,95,114),(26,130,96,103),(27,139,97,112),(28,128,98,101),(29,137,99,110),(30,126,100,119),(31,135,81,108),(32,124,82,117),(33,133,83,106),(34,122,84,115),(35,131,85,104),(36,140,86,113),(37,129,87,102),(38,138,88,111),(39,127,89,120),(40,136,90,109)], [(2,10),(3,19),(4,8),(5,17),(7,15),(9,13),(12,20),(14,18),(21,35),(22,24),(23,33),(25,31),(26,40),(27,29),(28,38),(30,36),(32,34),(37,39),(41,57),(42,46),(43,55),(45,53),(47,51),(48,60),(50,58),(52,56),(61,158),(62,147),(63,156),(64,145),(65,154),(66,143),(67,152),(68,141),(69,150),(70,159),(71,148),(72,157),(73,146),(74,155),(75,144),(76,153),(77,142),(78,151),(79,160),(80,149),(81,95),(82,84),(83,93),(85,91),(86,100),(87,89),(88,98),(90,96),(92,94),(97,99),(101,138),(102,127),(103,136),(104,125),(105,134),(106,123),(107,132),(108,121),(109,130),(110,139),(111,128),(112,137),(113,126),(114,135),(115,124),(116,133),(117,122),(118,131),(119,140),(120,129)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O5A5B10A···10F10G10H10I10J20A···20H20I···20P
order12222222224444444444444445510···101010101020···2020···20
size1111410101010202222444410101010202020222···244444···48···8

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102- 1+4D4×D5Q8.10D10D5×C4○D4
kernelD2022D4D10.12D4D10⋊D4D5×C4⋊C4D208C4D10.13D4D102Q8C4×C5⋊D4Dic5⋊Q8C5×C22⋊Q8C2×C4○D20C2×Q82D5D20C22⋊Q8Dic5C22⋊C4C4⋊C4C22×C4C2×Q8C10C4C2C2
# reps12221211111142446221444

Matrix representation of D2022D4 in GL6(𝔽41)

4000000
0400000
00323700
000900
000001
0000406
,
100000
010000
0031600
0041000
000001
000010
,
12370000
26290000
0040000
0004000
000010
0000640
,
4000000
3510000
001500
0004000
000010
0000640

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,0,0,0,0,0,37,9,0,0,0,0,0,0,0,40,0,0,0,0,1,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,4,0,0,0,0,6,10,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,26,0,0,0,0,37,29,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,6,0,0,0,0,0,40],[40,35,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,5,40,0,0,0,0,0,0,1,6,0,0,0,0,0,40] >;

D2022D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_{22}D_4
% in TeX

G:=Group("D20:22D4");
// GroupNames label

G:=SmallGroup(320,1303);
// by ID

G=gap.SmallGroup(320,1303);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,1571,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^9,c*b*c^-1=a^8*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽