Copied to
clipboard

G = Dic53SD16order 320 = 26·5

2nd semidirect product of Dic5 and SD16 acting via SD16/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic53SD16, (C5×D4).7D4, C20.170(C2×D4), (C2×C8).143D10, D4.2(C5⋊D4), C55(D4.D4), (C2×Q8).50D10, (D4×Dic5).8C2, (C2×SD16).3D5, C2.26(D5×SD16), Dic5⋊Q83C2, (C2×D4).143D10, C20.96(C4○D4), C4.9(D42D5), Q8⋊Dic525C2, C20.8Q832C2, (C10×SD16).6C2, C10.43(C2×SD16), C22.260(D4×D5), C20.44D433C2, (C2×C40).290C22, (C2×C20).439C23, (C2×Dic5).238D4, (D4×C10).88C22, (Q8×C10).69C22, C10.112(C4⋊D4), C2.26(SD16⋊D5), C10.45(C8.C22), C4⋊Dic5.169C22, (C4×Dic5).52C22, C2.24(Dic5⋊D4), (C2×Dic10).127C22, C4.38(C2×C5⋊D4), (C2×D4.D5).8C2, (C2×C10).351(C2×D4), (C2×C4).528(C22×D5), (C2×C52C8).151C22, SmallGroup(320,789)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Dic53SD16
C1C5C10C20C2×C20C4×Dic5D4×Dic5 — Dic53SD16
C5C10C2×C20 — Dic53SD16
C1C22C2×C4C2×SD16

Generators and relations for Dic53SD16
 G = < a,b,c,d | a10=c8=d2=1, b2=a5, bab-1=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd=c3 >

Subgroups: 438 in 120 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, C2×SD16, C52C8, C40, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×C10, D4.D4, C2×C52C8, C4×Dic5, C10.D4, C4⋊Dic5, D4.D5, C23.D5, C2×C40, C5×SD16, C2×Dic10, C22×Dic5, D4×C10, Q8×C10, C20.8Q8, C20.44D4, Q8⋊Dic5, C2×D4.D5, D4×Dic5, Dic5⋊Q8, C10×SD16, Dic53SD16
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C8.C22, C5⋊D4, C22×D5, D4.D4, D4×D5, D42D5, C2×C5⋊D4, D5×SD16, SD16⋊D5, Dic5⋊D4, Dic53SD16

Smallest permutation representation of Dic53SD16
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 99 6 94)(2 98 7 93)(3 97 8 92)(4 96 9 91)(5 95 10 100)(11 90 16 85)(12 89 17 84)(13 88 18 83)(14 87 19 82)(15 86 20 81)(21 109 26 104)(22 108 27 103)(23 107 28 102)(24 106 29 101)(25 105 30 110)(31 114 36 119)(32 113 37 118)(33 112 38 117)(34 111 39 116)(35 120 40 115)(41 129 46 124)(42 128 47 123)(43 127 48 122)(44 126 49 121)(45 125 50 130)(51 134 56 139)(52 133 57 138)(53 132 58 137)(54 131 59 136)(55 140 60 135)(61 149 66 144)(62 148 67 143)(63 147 68 142)(64 146 69 141)(65 145 70 150)(71 154 76 159)(72 153 77 158)(73 152 78 157)(74 151 79 156)(75 160 80 155)
(1 85 36 68 28 76 48 56)(2 86 37 69 29 77 49 57)(3 87 38 70 30 78 50 58)(4 88 39 61 21 79 41 59)(5 89 40 62 22 80 42 60)(6 90 31 63 23 71 43 51)(7 81 32 64 24 72 44 52)(8 82 33 65 25 73 45 53)(9 83 34 66 26 74 46 54)(10 84 35 67 27 75 47 55)(11 114 142 107 159 127 139 94)(12 115 143 108 160 128 140 95)(13 116 144 109 151 129 131 96)(14 117 145 110 152 130 132 97)(15 118 146 101 153 121 133 98)(16 119 147 102 154 122 134 99)(17 120 148 103 155 123 135 100)(18 111 149 104 156 124 136 91)(19 112 150 105 157 125 137 92)(20 113 141 106 158 126 138 93)
(11 142)(12 143)(13 144)(14 145)(15 146)(16 147)(17 148)(18 149)(19 150)(20 141)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 41)(40 42)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 88)(62 89)(63 90)(64 81)(65 82)(66 83)(67 84)(68 85)(69 86)(70 87)(111 124)(112 125)(113 126)(114 127)(115 128)(116 129)(117 130)(118 121)(119 122)(120 123)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,99,6,94)(2,98,7,93)(3,97,8,92)(4,96,9,91)(5,95,10,100)(11,90,16,85)(12,89,17,84)(13,88,18,83)(14,87,19,82)(15,86,20,81)(21,109,26,104)(22,108,27,103)(23,107,28,102)(24,106,29,101)(25,105,30,110)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,129,46,124)(42,128,47,123)(43,127,48,122)(44,126,49,121)(45,125,50,130)(51,134,56,139)(52,133,57,138)(53,132,58,137)(54,131,59,136)(55,140,60,135)(61,149,66,144)(62,148,67,143)(63,147,68,142)(64,146,69,141)(65,145,70,150)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155), (1,85,36,68,28,76,48,56)(2,86,37,69,29,77,49,57)(3,87,38,70,30,78,50,58)(4,88,39,61,21,79,41,59)(5,89,40,62,22,80,42,60)(6,90,31,63,23,71,43,51)(7,81,32,64,24,72,44,52)(8,82,33,65,25,73,45,53)(9,83,34,66,26,74,46,54)(10,84,35,67,27,75,47,55)(11,114,142,107,159,127,139,94)(12,115,143,108,160,128,140,95)(13,116,144,109,151,129,131,96)(14,117,145,110,152,130,132,97)(15,118,146,101,153,121,133,98)(16,119,147,102,154,122,134,99)(17,120,148,103,155,123,135,100)(18,111,149,104,156,124,136,91)(19,112,150,105,157,125,137,92)(20,113,141,106,158,126,138,93), (11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,141)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,41)(40,42)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,88)(62,89)(63,90)(64,81)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(118,121)(119,122)(120,123)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,99,6,94)(2,98,7,93)(3,97,8,92)(4,96,9,91)(5,95,10,100)(11,90,16,85)(12,89,17,84)(13,88,18,83)(14,87,19,82)(15,86,20,81)(21,109,26,104)(22,108,27,103)(23,107,28,102)(24,106,29,101)(25,105,30,110)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,129,46,124)(42,128,47,123)(43,127,48,122)(44,126,49,121)(45,125,50,130)(51,134,56,139)(52,133,57,138)(53,132,58,137)(54,131,59,136)(55,140,60,135)(61,149,66,144)(62,148,67,143)(63,147,68,142)(64,146,69,141)(65,145,70,150)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155), (1,85,36,68,28,76,48,56)(2,86,37,69,29,77,49,57)(3,87,38,70,30,78,50,58)(4,88,39,61,21,79,41,59)(5,89,40,62,22,80,42,60)(6,90,31,63,23,71,43,51)(7,81,32,64,24,72,44,52)(8,82,33,65,25,73,45,53)(9,83,34,66,26,74,46,54)(10,84,35,67,27,75,47,55)(11,114,142,107,159,127,139,94)(12,115,143,108,160,128,140,95)(13,116,144,109,151,129,131,96)(14,117,145,110,152,130,132,97)(15,118,146,101,153,121,133,98)(16,119,147,102,154,122,134,99)(17,120,148,103,155,123,135,100)(18,111,149,104,156,124,136,91)(19,112,150,105,157,125,137,92)(20,113,141,106,158,126,138,93), (11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,141)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,41)(40,42)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,88)(62,89)(63,90)(64,81)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(118,121)(119,122)(120,123)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,99,6,94),(2,98,7,93),(3,97,8,92),(4,96,9,91),(5,95,10,100),(11,90,16,85),(12,89,17,84),(13,88,18,83),(14,87,19,82),(15,86,20,81),(21,109,26,104),(22,108,27,103),(23,107,28,102),(24,106,29,101),(25,105,30,110),(31,114,36,119),(32,113,37,118),(33,112,38,117),(34,111,39,116),(35,120,40,115),(41,129,46,124),(42,128,47,123),(43,127,48,122),(44,126,49,121),(45,125,50,130),(51,134,56,139),(52,133,57,138),(53,132,58,137),(54,131,59,136),(55,140,60,135),(61,149,66,144),(62,148,67,143),(63,147,68,142),(64,146,69,141),(65,145,70,150),(71,154,76,159),(72,153,77,158),(73,152,78,157),(74,151,79,156),(75,160,80,155)], [(1,85,36,68,28,76,48,56),(2,86,37,69,29,77,49,57),(3,87,38,70,30,78,50,58),(4,88,39,61,21,79,41,59),(5,89,40,62,22,80,42,60),(6,90,31,63,23,71,43,51),(7,81,32,64,24,72,44,52),(8,82,33,65,25,73,45,53),(9,83,34,66,26,74,46,54),(10,84,35,67,27,75,47,55),(11,114,142,107,159,127,139,94),(12,115,143,108,160,128,140,95),(13,116,144,109,151,129,131,96),(14,117,145,110,152,130,132,97),(15,118,146,101,153,121,133,98),(16,119,147,102,154,122,134,99),(17,120,148,103,155,123,135,100),(18,111,149,104,156,124,136,91),(19,112,150,105,157,125,137,92),(20,113,141,106,158,126,138,93)], [(11,142),(12,143),(13,144),(14,145),(15,146),(16,147),(17,148),(18,149),(19,150),(20,141),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,41),(40,42),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,88),(62,89),(63,90),(64,81),(65,82),(66,83),(67,84),(68,85),(69,86),(70,87),(111,124),(112,125),(113,126),(114,127),(115,128),(116,129),(117,130),(118,121),(119,122),(120,123),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222244444444455888810···1010101010202020202020202040···40
size111144228101020202040224420202···28888444488884···4

47 irreducible representations

dim1111111122222222244444
type++++++++++++++--+-
imageC1C2C2C2C2C2C2C2D4D4D5SD16C4○D4D10D10D10C5⋊D4C8.C22D42D5D4×D5D5×SD16SD16⋊D5
kernelDic53SD16C20.8Q8C20.44D4Q8⋊Dic5C2×D4.D5D4×Dic5Dic5⋊Q8C10×SD16C2×Dic5C5×D4C2×SD16Dic5C20C2×C8C2×D4C2×Q8D4C10C4C22C2C2
# reps1111111122242222812244

Matrix representation of Dic53SD16 in GL6(𝔽41)

4010000
5350000
0040000
0004000
000010
000001
,
18210000
10230000
0032000
000900
000010
000001
,
4000000
0400000
000100
0040000
0000102
0000261
,
100000
010000
001000
0004000
000010
00001640

G:=sub<GL(6,GF(41))| [40,5,0,0,0,0,1,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,10,0,0,0,0,21,23,0,0,0,0,0,0,32,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,10,26,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,16,0,0,0,0,0,40] >;

Dic53SD16 in GAP, Magma, Sage, TeX

{\rm Dic}_5\rtimes_3{\rm SD}_{16}
% in TeX

G:=Group("Dic5:3SD16");
// GroupNames label

G:=SmallGroup(320,789);
// by ID

G=gap.SmallGroup(320,789);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,422,135,184,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^8=d^2=1,b^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽