Copied to
clipboard

G = C4015D4order 320 = 26·5

15th semidirect product of C40 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4015D4, Dic51SD16, C52C815D4, C88(C5⋊D4), C54(C85D4), C4.25(D4×D5), C20.50(C2×D4), (C10×SD16)⋊9C2, (C8×Dic5)⋊11C2, (C2×SD16)⋊15D5, (C2×D4).76D10, (C2×C8).264D10, C20⋊D4.8C2, (C2×Q8).57D10, C2.31(D5×SD16), Dic5⋊Q85C2, C10.48(C2×SD16), C22.272(D4×D5), C2.22(C20⋊D4), C10.31(C41D4), (C2×C20).452C23, (C2×C40).165C22, (C2×Dic5).160D4, (Q8×C10).81C22, (D4×C10).101C22, (C2×D20).126C22, (C4×Dic5).273C22, (C2×Dic10).133C22, C4.9(C2×C5⋊D4), (C2×Q8⋊D5)⋊18C2, (C2×C40⋊C2)⋊30C2, (C2×D4.D5)⋊21C2, (C2×C10).364(C2×D4), (C2×C4).541(C22×D5), (C2×C52C8).283C22, SmallGroup(320,802)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C4015D4
C1C5C10C2×C10C2×C20C2×D20C2×C40⋊C2 — C4015D4
C5C10C2×C20 — C4015D4
C1C22C2×C4C2×SD16

Generators and relations for C4015D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a9, cac=a19, cbc=b-1 >

Subgroups: 654 in 142 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C10, C42, C4⋊C4, C2×C8, C2×C8, SD16, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C4×C8, C41D4, C4⋊Q8, C2×SD16, C2×SD16, C52C8, C40, Dic10, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C85D4, C40⋊C2, C2×C52C8, C4×Dic5, C10.D4, D4.D5, Q8⋊D5, C2×C40, C5×SD16, C2×Dic10, C2×D20, C2×C5⋊D4, D4×C10, Q8×C10, C8×Dic5, C2×C40⋊C2, C2×D4.D5, C20⋊D4, C2×Q8⋊D5, Dic5⋊Q8, C10×SD16, C4015D4
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C41D4, C2×SD16, C5⋊D4, C22×D5, C85D4, D4×D5, C2×C5⋊D4, D5×SD16, C20⋊D4, C4015D4

Smallest permutation representation of C4015D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 44 150 118)(2 53 151 87)(3 62 152 96)(4 71 153 105)(5 80 154 114)(6 49 155 83)(7 58 156 92)(8 67 157 101)(9 76 158 110)(10 45 159 119)(11 54 160 88)(12 63 121 97)(13 72 122 106)(14 41 123 115)(15 50 124 84)(16 59 125 93)(17 68 126 102)(18 77 127 111)(19 46 128 120)(20 55 129 89)(21 64 130 98)(22 73 131 107)(23 42 132 116)(24 51 133 85)(25 60 134 94)(26 69 135 103)(27 78 136 112)(28 47 137 81)(29 56 138 90)(30 65 139 99)(31 74 140 108)(32 43 141 117)(33 52 142 86)(34 61 143 95)(35 70 144 104)(36 79 145 113)(37 48 146 82)(38 57 147 91)(39 66 148 100)(40 75 149 109)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)(41 101)(42 120)(43 99)(44 118)(45 97)(46 116)(47 95)(48 114)(49 93)(50 112)(51 91)(52 110)(53 89)(54 108)(55 87)(56 106)(57 85)(58 104)(59 83)(60 102)(61 81)(62 100)(63 119)(64 98)(65 117)(66 96)(67 115)(68 94)(69 113)(70 92)(71 111)(72 90)(73 109)(74 88)(75 107)(76 86)(77 105)(78 84)(79 103)(80 82)(121 159)(122 138)(123 157)(124 136)(125 155)(126 134)(127 153)(128 132)(129 151)(131 149)(133 147)(135 145)(137 143)(139 141)(140 160)(142 158)(144 156)(146 154)(148 152)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,44,150,118)(2,53,151,87)(3,62,152,96)(4,71,153,105)(5,80,154,114)(6,49,155,83)(7,58,156,92)(8,67,157,101)(9,76,158,110)(10,45,159,119)(11,54,160,88)(12,63,121,97)(13,72,122,106)(14,41,123,115)(15,50,124,84)(16,59,125,93)(17,68,126,102)(18,77,127,111)(19,46,128,120)(20,55,129,89)(21,64,130,98)(22,73,131,107)(23,42,132,116)(24,51,133,85)(25,60,134,94)(26,69,135,103)(27,78,136,112)(28,47,137,81)(29,56,138,90)(30,65,139,99)(31,74,140,108)(32,43,141,117)(33,52,142,86)(34,61,143,95)(35,70,144,104)(36,79,145,113)(37,48,146,82)(38,57,147,91)(39,66,148,100)(40,75,149,109), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,101)(42,120)(43,99)(44,118)(45,97)(46,116)(47,95)(48,114)(49,93)(50,112)(51,91)(52,110)(53,89)(54,108)(55,87)(56,106)(57,85)(58,104)(59,83)(60,102)(61,81)(62,100)(63,119)(64,98)(65,117)(66,96)(67,115)(68,94)(69,113)(70,92)(71,111)(72,90)(73,109)(74,88)(75,107)(76,86)(77,105)(78,84)(79,103)(80,82)(121,159)(122,138)(123,157)(124,136)(125,155)(126,134)(127,153)(128,132)(129,151)(131,149)(133,147)(135,145)(137,143)(139,141)(140,160)(142,158)(144,156)(146,154)(148,152)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,44,150,118)(2,53,151,87)(3,62,152,96)(4,71,153,105)(5,80,154,114)(6,49,155,83)(7,58,156,92)(8,67,157,101)(9,76,158,110)(10,45,159,119)(11,54,160,88)(12,63,121,97)(13,72,122,106)(14,41,123,115)(15,50,124,84)(16,59,125,93)(17,68,126,102)(18,77,127,111)(19,46,128,120)(20,55,129,89)(21,64,130,98)(22,73,131,107)(23,42,132,116)(24,51,133,85)(25,60,134,94)(26,69,135,103)(27,78,136,112)(28,47,137,81)(29,56,138,90)(30,65,139,99)(31,74,140,108)(32,43,141,117)(33,52,142,86)(34,61,143,95)(35,70,144,104)(36,79,145,113)(37,48,146,82)(38,57,147,91)(39,66,148,100)(40,75,149,109), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,101)(42,120)(43,99)(44,118)(45,97)(46,116)(47,95)(48,114)(49,93)(50,112)(51,91)(52,110)(53,89)(54,108)(55,87)(56,106)(57,85)(58,104)(59,83)(60,102)(61,81)(62,100)(63,119)(64,98)(65,117)(66,96)(67,115)(68,94)(69,113)(70,92)(71,111)(72,90)(73,109)(74,88)(75,107)(76,86)(77,105)(78,84)(79,103)(80,82)(121,159)(122,138)(123,157)(124,136)(125,155)(126,134)(127,153)(128,132)(129,151)(131,149)(133,147)(135,145)(137,143)(139,141)(140,160)(142,158)(144,156)(146,154)(148,152) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,44,150,118),(2,53,151,87),(3,62,152,96),(4,71,153,105),(5,80,154,114),(6,49,155,83),(7,58,156,92),(8,67,157,101),(9,76,158,110),(10,45,159,119),(11,54,160,88),(12,63,121,97),(13,72,122,106),(14,41,123,115),(15,50,124,84),(16,59,125,93),(17,68,126,102),(18,77,127,111),(19,46,128,120),(20,55,129,89),(21,64,130,98),(22,73,131,107),(23,42,132,116),(24,51,133,85),(25,60,134,94),(26,69,135,103),(27,78,136,112),(28,47,137,81),(29,56,138,90),(30,65,139,99),(31,74,140,108),(32,43,141,117),(33,52,142,86),(34,61,143,95),(35,70,144,104),(36,79,145,113),(37,48,146,82),(38,57,147,91),(39,66,148,100),(40,75,149,109)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32),(41,101),(42,120),(43,99),(44,118),(45,97),(46,116),(47,95),(48,114),(49,93),(50,112),(51,91),(52,110),(53,89),(54,108),(55,87),(56,106),(57,85),(58,104),(59,83),(60,102),(61,81),(62,100),(63,119),(64,98),(65,117),(66,96),(67,115),(68,94),(69,113),(70,92),(71,111),(72,90),(73,109),(74,88),(75,107),(76,86),(77,105),(78,84),(79,103),(80,82),(121,159),(122,138),(123,157),(124,136),(125,155),(126,134),(127,153),(128,132),(129,151),(131,149),(133,147),(135,145),(137,143),(139,141),(140,160),(142,158),(144,156),(146,154),(148,152)]])

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H5A5B8A8B8C8D8E8F8G8H10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222244444444558888888810···1010101010202020202020202040···40
size11118402281010101040222222101010102···28888444488884···4

50 irreducible representations

dim11111111222222222444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D5SD16D10D10D10C5⋊D4D4×D5D4×D5D5×SD16
kernelC4015D4C8×Dic5C2×C40⋊C2C2×D4.D5C20⋊D4C2×Q8⋊D5Dic5⋊Q8C10×SD16C52C8C40C2×Dic5C2×SD16Dic5C2×C8C2×D4C2×Q8C8C4C22C2
# reps11111111222282228228

Matrix representation of C4015D4 in GL6(𝔽41)

0350000
770000
00152600
00151500
00001526
00001515
,
34350000
870000
001000
000100
000001
0000400
,
34350000
870000
001000
0004000
000010
0000040

G:=sub<GL(6,GF(41))| [0,7,0,0,0,0,35,7,0,0,0,0,0,0,15,15,0,0,0,0,26,15,0,0,0,0,0,0,15,15,0,0,0,0,26,15],[34,8,0,0,0,0,35,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[34,8,0,0,0,0,35,7,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

C4015D4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_{15}D_4
% in TeX

G:=Group("C40:15D4");
// GroupNames label

G:=SmallGroup(320,802);
// by ID

G=gap.SmallGroup(320,802);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,254,555,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^9,c*a*c=a^19,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽