Copied to
clipboard

## G = C22×C9○He3order 324 = 22·34

### Direct product of C22 and C9○He3

direct product, metabelian, nilpotent (class 2), monomial

Series: Derived Chief Lower central Upper central

 Derived series C1 — C3 — C22×C9○He3
 Chief series C1 — C3 — C9 — C3×C9 — C9○He3 — C2×C9○He3 — C22×C9○He3
 Lower central C1 — C3 — C22×C9○He3
 Upper central C1 — C2×C18 — C22×C9○He3

Generators and relations for C22×C9○He3
G = < a,b,c,d,e,f | a2=b2=c9=d3=f3=1, e1=c6, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=c3d, ef=fe >

Subgroups: 205 in 165 conjugacy classes, 145 normal (10 characteristic)
C1, C2, C3, C3, C22, C6, C6, C9, C9, C32, C2×C6, C2×C6, C18, C3×C6, C3×C9, He3, 3- 1+2, C2×C18, C2×C18, C62, C3×C18, C2×He3, C2×3- 1+2, C9○He3, C6×C18, C22×He3, C22×3- 1+2, C2×C9○He3, C22×C9○He3
Quotients: C1, C2, C3, C22, C6, C32, C2×C6, C3×C6, C33, C62, C32×C6, C9○He3, C3×C62, C2×C9○He3, C22×C9○He3

Smallest permutation representation of C22×C9○He3
On 108 points
Generators in S108
(1 62)(2 63)(3 55)(4 56)(5 57)(6 58)(7 59)(8 60)(9 61)(10 64)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 73)(20 74)(21 75)(22 76)(23 77)(24 78)(25 79)(26 80)(27 81)(28 82)(29 83)(30 84)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 91)(38 92)(39 93)(40 94)(41 95)(42 96)(43 97)(44 98)(45 99)(46 100)(47 101)(48 102)(49 103)(50 104)(51 105)(52 106)(53 107)(54 108)
(1 35)(2 36)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(55 82)(56 83)(57 84)(58 85)(59 86)(60 87)(61 88)(62 89)(63 90)(64 91)(65 92)(66 93)(67 94)(68 95)(69 96)(70 97)(71 98)(72 99)(73 100)(74 101)(75 102)(76 103)(77 104)(78 105)(79 106)(80 107)(81 108)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)
(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(37 43 40)(38 44 41)(39 45 42)(46 49 52)(47 50 53)(48 51 54)(64 70 67)(65 71 68)(66 72 69)(73 76 79)(74 77 80)(75 78 81)(91 97 94)(92 98 95)(93 99 96)(100 103 106)(101 104 107)(102 105 108)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 106 103)(101 107 104)(102 108 105)
(1 26 11)(2 27 12)(3 19 13)(4 20 14)(5 21 15)(6 22 16)(7 23 17)(8 24 18)(9 25 10)(28 46 40)(29 47 41)(30 48 42)(31 49 43)(32 50 44)(33 51 45)(34 52 37)(35 53 38)(36 54 39)(55 73 67)(56 74 68)(57 75 69)(58 76 70)(59 77 71)(60 78 72)(61 79 64)(62 80 65)(63 81 66)(82 100 94)(83 101 95)(84 102 96)(85 103 97)(86 104 98)(87 105 99)(88 106 91)(89 107 92)(90 108 93)

G:=sub<Sym(108)| (1,62)(2,63)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,75)(22,76)(23,77)(24,78)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,103)(50,104)(51,105)(52,106)(53,107)(54,108), (1,35)(2,36)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81)(91,97,94)(92,98,95)(93,99,96)(100,103,106)(101,104,107)(102,105,108), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105), (1,26,11)(2,27,12)(3,19,13)(4,20,14)(5,21,15)(6,22,16)(7,23,17)(8,24,18)(9,25,10)(28,46,40)(29,47,41)(30,48,42)(31,49,43)(32,50,44)(33,51,45)(34,52,37)(35,53,38)(36,54,39)(55,73,67)(56,74,68)(57,75,69)(58,76,70)(59,77,71)(60,78,72)(61,79,64)(62,80,65)(63,81,66)(82,100,94)(83,101,95)(84,102,96)(85,103,97)(86,104,98)(87,105,99)(88,106,91)(89,107,92)(90,108,93)>;

G:=Group( (1,62)(2,63)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,75)(22,76)(23,77)(24,78)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,103)(50,104)(51,105)(52,106)(53,107)(54,108), (1,35)(2,36)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81)(91,97,94)(92,98,95)(93,99,96)(100,103,106)(101,104,107)(102,105,108), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105), (1,26,11)(2,27,12)(3,19,13)(4,20,14)(5,21,15)(6,22,16)(7,23,17)(8,24,18)(9,25,10)(28,46,40)(29,47,41)(30,48,42)(31,49,43)(32,50,44)(33,51,45)(34,52,37)(35,53,38)(36,54,39)(55,73,67)(56,74,68)(57,75,69)(58,76,70)(59,77,71)(60,78,72)(61,79,64)(62,80,65)(63,81,66)(82,100,94)(83,101,95)(84,102,96)(85,103,97)(86,104,98)(87,105,99)(88,106,91)(89,107,92)(90,108,93) );

G=PermutationGroup([[(1,62),(2,63),(3,55),(4,56),(5,57),(6,58),(7,59),(8,60),(9,61),(10,64),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,73),(20,74),(21,75),(22,76),(23,77),(24,78),(25,79),(26,80),(27,81),(28,82),(29,83),(30,84),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,91),(38,92),(39,93),(40,94),(41,95),(42,96),(43,97),(44,98),(45,99),(46,100),(47,101),(48,102),(49,103),(50,104),(51,105),(52,106),(53,107),(54,108)], [(1,35),(2,36),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(55,82),(56,83),(57,84),(58,85),(59,86),(60,87),(61,88),(62,89),(63,90),(64,91),(65,92),(66,93),(67,94),(68,95),(69,96),(70,97),(71,98),(72,99),(73,100),(74,101),(75,102),(76,103),(77,104),(78,105),(79,106),(80,107),(81,108)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)], [(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(37,43,40),(38,44,41),(39,45,42),(46,49,52),(47,50,53),(48,51,54),(64,70,67),(65,71,68),(66,72,69),(73,76,79),(74,77,80),(75,78,81),(91,97,94),(92,98,95),(93,99,96),(100,103,106),(101,104,107),(102,105,108)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,106,103),(101,107,104),(102,108,105)], [(1,26,11),(2,27,12),(3,19,13),(4,20,14),(5,21,15),(6,22,16),(7,23,17),(8,24,18),(9,25,10),(28,46,40),(29,47,41),(30,48,42),(31,49,43),(32,50,44),(33,51,45),(34,52,37),(35,53,38),(36,54,39),(55,73,67),(56,74,68),(57,75,69),(58,76,70),(59,77,71),(60,78,72),(61,79,64),(62,80,65),(63,81,66),(82,100,94),(83,101,95),(84,102,96),(85,103,97),(86,104,98),(87,105,99),(88,106,91),(89,107,92),(90,108,93)]])

132 conjugacy classes

 class 1 2A 2B 2C 3A 3B 3C ··· 3J 6A ··· 6F 6G ··· 6AD 9A ··· 9F 9G ··· 9V 18A ··· 18R 18S ··· 18BN order 1 2 2 2 3 3 3 ··· 3 6 ··· 6 6 ··· 6 9 ··· 9 9 ··· 9 18 ··· 18 18 ··· 18 size 1 1 1 1 1 1 3 ··· 3 1 ··· 1 3 ··· 3 1 ··· 1 3 ··· 3 1 ··· 1 3 ··· 3

132 irreducible representations

 dim 1 1 1 1 1 1 1 1 3 3 type + + image C1 C2 C3 C3 C3 C6 C6 C6 C9○He3 C2×C9○He3 kernel C22×C9○He3 C2×C9○He3 C6×C18 C22×He3 C22×3- 1+2 C3×C18 C2×He3 C2×3- 1+2 C22 C2 # reps 1 3 8 2 16 24 6 48 6 18

Matrix representation of C22×C9○He3 in GL5(𝔽19)

 18 0 0 0 0 0 18 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
,
 1 0 0 0 0 0 18 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
,
 1 0 0 0 0 0 1 0 0 0 0 0 9 0 0 0 0 0 9 0 0 0 0 0 9
,
 11 0 0 0 0 0 7 0 0 0 0 0 1 0 0 0 0 0 11 0 0 0 0 0 7
,
 1 0 0 0 0 0 1 0 0 0 0 0 11 0 0 0 0 0 11 0 0 0 0 0 11
,
 1 0 0 0 0 0 7 0 0 0 0 0 0 11 0 0 0 0 0 7 0 0 1 0 0

G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[11,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,11],[1,0,0,0,0,0,7,0,0,0,0,0,0,0,1,0,0,11,0,0,0,0,0,7,0] >;

C22×C9○He3 in GAP, Magma, Sage, TeX

C_2^2\times C_9\circ {\rm He}_3
% in TeX

G:=Group("C2^2xC9oHe3");
// GroupNames label

G:=SmallGroup(324,154);
// by ID

G=gap.SmallGroup(324,154);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,735,118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^9=d^3=f^3=1,e^1=c^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=c^3*d,e*f=f*e>;
// generators/relations

׿
×
𝔽